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PREFACE
The subject of this work is the same as that of the

Differential and Integral Calculus, but parts of it are treated

somewhat differently, especially the fundamental principles;

and these, it is believed, are made so clear that any ordinary

algebraic student can readily comprehend them.

In regard to a variable quantity, it is taken to mean as

qualified—that is, its value is subject to a continual change,

either increasing or decreasing. Now this being the case, it

is evident that its value must have some rate of increase or

decrease, uniform or variable, according to governing condi-

tions. Upon this theory this work is founded, and it is hoped

it so clears the way that it can be understanding^ followed

by those who are so inclined.

How is it in regard to a differential, so called, and the

process of finding it? First an increment is added to the

variable, and finally, in order to obtain what is sought, this

increment is made equal to zero and to something at the same
time—the something being taken as the differential of the

variable. No wonder the student becomes nonplussed, for it

is very difficult to conceive how even an infinitesimal, or "the

last assignable value of a quantity" and zero can be identical.

Being confronted by such a dilemma, he either has to accept

the doctor's diagnosis or give the matter up in disgust.

Let it not be imagined that this work is claimed to be

perfect by its author, or that he considers himself more than

a tyro compared with the great mathematicians of the past or

present. He simply gives his theory of the subject, believing

it to be correct and both reasonable and comprehensible, and

if approved, even by a few, he will not feel he has labored

wholly in vain. It is a hard matter, however, to persuade a

man to part with his idols; therefore, since Infinitesimal was
bom lang syne and has done good service, possibly it is

unreasonable to expect that the little fellow should be

summarily dismissed.

Hiram Cook.

Norwich, Connecticut

1916

445008
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PART ONE

DIRECT METHOD

DEFINITIONS

Art. 1. Two classes of quantities are employed: namely,

constants and variables. Constants are usually represented by

the first letters of the alphabet, a, b, c, etc., and variables by the

last, u, X, y, etc.

The value of a constant remains the same throughout the

same investigation; while that of a variable continually in-

creases or decreases at either a uniform or variable rate.

2. The variable whose rate of increase or decrease is as-

sumed to be uniform is called the independent variable, and the

variable whose value depends on that of the independent vari-

able is called the dependent variable. Thus u is the dependent

and X the independent variable in

u= ax^ -{- b.

3. The dependent variable is a function of the independent

variable. Thus w is a function of x in

u= x^-\- ax -\- b,

which is expressed generally thus, u= f (x), in which / is

simply a symbol denoting function.

4. Functions are of two general classes, algebraic and trans-

cendental.

A function is algebraic when the dependent variable equals

the expression containing the independent variable in a purely

algebraic form, as

u= a^— x^.

A function is transcendental when the dependent variable

equals the expression containing the independent variable in
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the form of an exponent, logarithm, sine, cosine, tangent, etc.,

as in

M= o^ ; w= log jir ; w= sin ^ ; u= cos ^ ; w= tan x , etc.

Transcendental functions are of two classes, logarithmic

and circular.

5. Functions are also explicit, implicit, increasing, and

decreasing.

An explicit function is one in which the dependent variable

is directly expressed in terms of the independent variable, as in

u= ax^ -\- h or u=^ log x.

An implicit function is one in which the value of the func-

tion is not directly expressed in terms of its variable and

constants. Thus in the equation

y^ + (^^y -\-bx^ + c=
y is an implicit function of x—that is, 3; is not directly ex-

pressed in terms of x and the constants a, b, and c.

An increasing function is one in which the dependent

variable will increase when the independent variable increases,

or will decrease when the independent variable decreases, as in

u= ax^ + b.

A decreasing function is one in which the dependent vari-

able will increase when the independent variable decreases, or

will decrease when the independent variable increases, as in

_ 1

X

6. A function may consist of two or more independent

variables, as

u= ax ± by zt C2 or u= axyz.

7. The rate of a variable—that is, its rate of increase or

decrease—is designated by writing d before it, as du represents

the rate of u, dx of x, dy of y, etc.

8. A ratal coefficient is the rate of the dependent variable

du
,

divided by that of the independent variable. Thus -- is the
dx

ratal coefficient oi u= f (x).
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Algebraic Functions
9. Illustrations of the application of the rates of variables

.

Let the side AC oi the rectangle

ABCD (Fig. 1) be represented by a,

the side CD by x, and the area by
u= ax. Extend AB to E, CD to F,

and draw EF parallel to BD. Now
let dx, the rate of increase of x, be

represented by DF, and the area of

ABCD by u^ax; then adx will

represent the area of BEDF, the rate of increase of ABCD,
or du, the rate of u. Therefore the rate of

E
I

I

I

_j
F

Fig

u^ax ( 1

)

is du= adx= ax^~^ dx. (2)

Extend AB of the rectangle ABCD (Fig. 2) to K and G,

also CD to L and H, and draw A^L, EF, and G// parallel to

AC. Now let AC he represented by a, FD by ;r, CF by y, and
the area of ABCD by a;j; -{- ay; also let c?;r, the rate of x, be

represented by DH, and </y, the rate of y, by LC; then adx will

[<^ ^ ^ B G represent the area of BGDH,
" ~; the rate of increase of the

I area of EBFD, and ady will

' represent the area of KALC,

J the rate of increase of the area

H will represent the rate of in-

crease of the area of ABCD,
of AECF ; hence adx -I- ady

L
L

or du Therefore the rate of

u= ax -\- ay (3)

is du= adx -f- ady. (4)

Extend the side AB of the rectangle ABCD (Fig. 3) to

G, CD to //, and draw EF, KL, and GH parallel to 5Z). Now
let ^C be represented by a, CD by x, FD by y, CF by jr— y,

and the area of AECF by w= a;j;—ay; also let dx, the rate

A F BK pOf;r, be represented by DH,
and dy, the rate of y, by Z)L;

then adx will represent the

area of BGDH, the rate of in-

crease of ABCD, ady that of

BKDL, the rate of increase

of EBFD, and adx—ady, that

of KGLH, the rate of increase

of ABCD less that of EBFD,

D L H
Fig. 3
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or du, the rate of u. Therefore the rate of

%=:ax— ay ( 5

)

is du= adx— ady. (6)

Extend the side AB of the rectangle ABCD (Fig. 4) to G,
CD to //, AC to E, ED to F, and draw EF parallel to /^^,
also GH to 5Z). Now let CD be represented by ax, AC by y,

and the area of ABCDM
F

1
—

Ia !b G
1

1

1

J
"*

c) H

by u^axy. Let aofjir,

the rate of ax, be repre-

sented by DH, and dy,

the rate of y, by AE;
N then a;rcfy will represent

the area of EFAB, the

rate of increase of the

area of ABCD in the di-

rection of M, and aydx
' ^ ^ ^ will represent the area

of BGDH, the rate of increase of the area of ABCD in the

direction of N. Hence axdy -[- adyx will represent the total

rate of increase of the area of ABCD, or du, the rate of u.

Therefore the rate of

u^axy (7)

is du= axdy + aydx. (8)

10. Let y= x, then dy= dx. Substituting x for y in (7) of

the last article, also x for y and dx for dy in (8), then

u= ax^ ( 1

)

and du= axdx + a;ir(/;r= 2axdx= 2ax^~^dx. (2)

Let y^x^, then (/y= 2;iraf;r. Substituting x^ for y in (7)
of the last article, also x^ for y and 2;i;flfjr for dy in (8), then

w= a;i;^ (3)

and du= 2ax^dx + ax^dx= 3ax^dx= 3ax^-^dx. (4)

Let y^x^, then dy^Sx^dx. Substituting as before, the

rate of

u= ax"^ ( 5 )

is du= 4-x^-^dx. (6)

Hence, if the exponent of x is n, n being a positive integer,

from (1) of Art. 9 and from (2), (4), and (6) of the present

article it is evident that the rate of

u= ax^ (7)

is du= anx^~'^dx. (8)
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When n is negative, as in

u= ax-'', (9)

multiplying both sides by x^ gives

ux^= a.

Passing to the rate,

x^^du -\- nux^-'^dx= 0.

Transposing and substituting for u its value, .

x^du=— anx'^dx,

and dividing by x^, du=— anx'^'^dx. (10)

When the exponent of ;r is a positive fraction, as in

u= ax'''\ (11)

raising both sides of the equation to the ^th power,

Passing to the rate,

su'-'^du= a'rx'-^dx. (12)

Raising (11) to the (s— l)th power and multiplying by s,

jw«-i= a'-^sx'-''/', (13)

and dividing (12) by (13),

r
du=^a—x'-''-^dx. (14)

s

When the exponent of ;i; is a negative fraction, as in

u^ax-"-'', (15)

raising both sides of the equation to the sth. power and multi-

plying by x^ give

u^x^= a*.

Passing to the rate,

su^-^x'^du + ru^x'-^dx= 0.

Transposing and dividing by su^-'^x^ give

r
du=——ux'^dx,

s

or, since u==ax-^^'^,

r
du=— a—x-^'^^-^dx. ( 16)

s
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Hence, the rate of a variable affected with any constant

exponent, + or —, having also any constant coefficient, is the

product of the coefficient and the exponent of the variable,

multiplied by the variable with its exponent less unity, into

the rate of the variable.

EXAMPLES

1. u— ax''^'' 2. u= ax'^

3. w=^jf("-^^>/»
1

4. u^— cx-'

2

11. To determine the rate of a function of the sum or dif-

ference of several independent variables, as

u^= av -\- bx -\- cy -\- ez, ( 1

)

assume u= r -\- s, r= av -\- bx, and s^cy -{- es, the rates of

which [see (4) and (6) of Art. 10] are respectively

du= dr -\- ds, dr= adv -f- bdx, and ds= cdy + eds. (2)

Substituting the values of dr and ds in du= dr -\- ds gives

du= adv + bdx + cdy -\- edz. (3)

Hence the rate of the sum or difference of several inde-

pendent variables is the corresponding sum or difference of

their rates taken separately.

12. To determine the rate of

u= ax— bx^ + cx^. ( 1

)

Assume v= ax, y= bx^, and 2= cx^,

the rates of which are [see (2) of Art. 9, and (2) and (10) of

Art. 10]

dv= adx, dy= 2bxdx, and ds= cnx^~'^dx. (2)

But, according to the assumption,

u= v— y -\- 2,

the rate of which is [see (1), Art. 11]

du^dv— dy-\-d2; (3)

therefore, substituting in (3) the values of dv, dy, and dz, then

du= adx— 2bxdx + cnx^'^dx. (4)
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Hence it is evident that the rate of the sum or difference of

any number of terms containing the same independent variable

is the corresponding sum or difference of their rates taken

separately.

13. Required the rate of

u== (ax ztby)"". (1)

Assume u= v^; (2)

then 'z;= ax±:by. (3)

Now the rate of (2), from Art. 10 is

du= nv^-'^dv, (4)

and the rate of (3) [see (3) and (5), Art. 9] is

dv= adx itz bdy.

But v^-^= {ax ± byY''^ , therefore, by substituting in

(4) the values of z/""^ and dv, the result is

du=^n {ax -\- by)^-'^ {adx -\- bdy) (5)

or du^n {ax + by)^-^adx + n {ax + by)^-^bdy. (6)

Hence, the rate of the nth power of the sum or difference

of two variables, is n times their sum or difference raised to

the {n— \)th power, multiplied by the sum or difference of

their rateSy whether n be an integer or fraction, positive or

negative.

EXAMPLES
1

1. u= x^—— x-\-2x^^^ 2. u= x"" 4- ax'^ -\-

b

4

3. u= ax^-"^ + ^^^^^ 4. u= {x -\- ay) n+i

14. To determine the rate of

u= vxy.

Assume 2= xy; ( 1

)

then u= vz,

and the rates of these, from Art. 9, are

dz= xdy + ydx (2)

and du= vdz -\- zdv. (3)
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Substituting the value of 2 from (1), and ds from (2), in

(3), then

du= vxdy + vydx + xydv. (4)

Hence it is evident that the rate of the product of any num-
ber of variables is the sum of the products obtained by multi-

plying the rate of each variable by the product of the others.

15. To determine the rate of

u= x'' (a + x) {bx^ + c:r").

Assume v= a-\-x (1)

and y= bx^ + cx^
; (2)

then u= x^vy.

Passing to the rate, (1) becomes

dv= dx, (3)

(2), by Art. 12,

dy= 2bxdx -\- cnx^-^dx= {2bx + cnx^~^) dx, (4)
and u= x^vy, by Art. 14,

du= x^vdy + x^ydv -j- rx^~'^vydx. ( 5 )

Substituting the values of v and 3; from (1) and (2), also

the values of dv and dy from (3) and (4), in (5), the result is

du= jir^ (a + x) (2bx + cnjr^-i) dx + x"- (bx^ + ex'') dx +
rjf^-i (a + x) {bx^ + ex"") dx,

or £/m= {x'' {a + ;r) (26;ir + cnx''-'^) +
;ir^ (^?.;ir2 + ex"") + r.^;^"^ (o^ + ^ ) (bx^ + <:;ir«) }af;ir.

Hence, the rate of the product of any number of factors

containing the same variable is the sum of the products ob-

tained by multiplying the rate of each factor by the product of

the others.

16. To determine the rate of

u=:^x^ (a— ^") (b -\-y'').

Assume v= a— 2^ (1)

and w=b -\- y"", (2)

then u= x^vw. (3)
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The rate of (1) is

dv=— n^-^dz, (4 )

that of (2) dw^ry-^dy, (5)

and that of (3)

du= x^vdw -\- x^wdv + 2xvwdx. (6)

Substituting the values of v and w from (1) and (2), also

the values of dv and dw from (4) and (5), in (6) gives

du= rx^ (a— ^") y^-^dy— nx^ (^ + 3'^) 2^~'^d2 +
2x(b + y) (a— 2"") dx.

Hence the preceding rule is also applicable when each fac-

tor contains a different variable, or, as is evident, even when

each factor contains several variables.

EXAMPLES

1. u^^x^yz"^ 2. u= {bx -\- c) {x"^ -\- ax)

3. u^x"^ (y + av)

17. To determine the rate of

u= {a-\-bx -\- cx^Y.

Assume y^a-\-bx-\- cx^
; ( 1

)

then u= y".

Passing to the rate,

dy=(b + 2cx)dx (2)

and du= ny^~^dy. (3)

Substituting the value of y from (1), and dy from (2), in

(3), then

du= n{a-{- bx-i-cx^Y-^ (b + 2cx) dx.

Hence, the rate of a polynomial affected with any constant

exponent is the exponent into the polynomial with its ex-

ponent less unity, multiplied by the rate of the polynomial.

18. To determine the rate of

u= \/(ax + bx"")

or u= (ax -^ bx'')\
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Passing to the rate, as in Art. 17,

1

du=— (ax + bx"")-"^ (a + nbx''-^) dx,

(a + nhx""-^) dx (a + nbx''-^) dx

2 (ax + bx^^y^ 2\/(ax + bx'')
or du=

Hence, the rate of the square root of a quantity is the rate

of the quantity under the radical, divided by twice the radical.

19. To determine the rate of a fraction, as the function

V

2

Multiplying through by z, uz^=v;

then passing to the rate, by (7) of Art. 9,

udz -\- zdu= dv.

Substituting for u its value and transposing give

vdz

or zdu

Therefore, dividing by z

Hence the rate of a fraction is the denominator into the

rate of the numerator, minus the numerator into the rate of

the denominator, divided by the square of the denominator.

If z/ be a constant, then, since a constant has no rate,

vdz
du=— ;

z'

that is, when v is sl constant, w is a decreasing function of z

and its rate is consequently negative.

EXAMPLES

1. u= ^y(\ +x^) 3. u=x^ (x— a) (a— x^)

V(-^+l)+V(^— 1)

zdu^dv-
z

zdv— vdz
u—

z
'

•by
zdv— vdz

au ^~
z"

V(^+i)-V(^— 1)

i
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Successive Rates and Ratal Coefficients

20. In obtaining these, and at the same time to exemplify

the work, let

u= x'' -\-ax^. (1)

Passing to the rate, by Art. 12,

du= (w;r"-i + 2ax) dx. (2)

Passing to the rate again, regarding dx as constant,

d (du)=d^u={n (n— 1) ;r"-2 + 2a} dx\ (3)

In like manner it will be found from (3) that

d^u= n (n—1) (n— 2) x^'-^dx^ (4)

(2), (3), and (4) are successive rates of (1), and

(njr"-i + 2ax), {n(n^l) x""-^ + 2a}

and {n {n— 1) (w— 2) x^^} are respectively coefficients of

dx, dx^, and dx^.

Dividing (2) by dx, (3) by dx"^, and (4) by dx^, the results

are

du= w.r»-i 4- 2a.r (5)
dx

d^u= n (n— l);ir"-2 + 2a (6)
dx-

d^u
and = n(n— 1) (w— 2) x""'^. (7)

dx^

du d^u d^u
Inasmuch as ,

, and are respectively equal to
dx dx^ dx^

the coefficients of dx, dx^, and dx^, they are called ratal co-

efficients ; du, d^u, and d^u are the first, second, and third rates

of the dependent variable u, and dx, dx^, and dx^ are the first,

second, and third powers of the rate of the independent vari-

able X.

Rates of Functions
OF Two OR More Independent Variables

21. It has been shown in Art. 9 that the rate of u= xy is

du= ydx -\- xdy ; therefore,
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if w= x^y,

its rate is du= nx^~'^ydx -\- x^dy
;

and if u= x^y^,

its rate is du= nx^~'^y^dx + mx^y^~'^dy
;

also if u^x^'y'^ -\- x'y', (1)

its rate is

du= nx'^-^y^dx -\- mx^'y^-'^dy + rx^'-'^y^dx -\- sx'y^-'^dy. (2)

See preceding rules.

Now if the rates of ( 1 ) be first taken under the supposition

that X varies and y remains constant, then that 3; varies and x
remains constant, the sum of the results will be the same as

(2) : thus

du= nx''-^y"^dx + rx^'-'^y^dx (3)

and du= mx'^y'^-^dy + sx^'y^'^dy. (4)

Adding (3) and (4),

du= nx''-'^y'*'dx -\- rx'-^y^dx + mx''y'*'-^dy + sx''y^-^dy, (2)

Dividing (3) by dx and (4) by dy, the results are

du = nx'^-^y"' + rx'-^y^ ( 5 )
dx

du
and = mx^'y'^-'^ + sx^'y^-^. (6)

dy

By taking the rate of (5) with respect to 3^ and the rate of

(6) with respect to x, the following are found,

d'u = mnx''-''y"'-'- + rsx'-''y'-^ ( 7 )
dxdy

d^u
and = mnx^'-^y'^-^ + rsx'-^y'-^ (8)

dydx

in which the right-hand members are identical ; therefore

d^u d^u

dxdy dydx

(2) is called the total rate, (3) and (4) partial rates, and

(5) and (6) ratal coefficients. The second, third, and higher

rates can be found in a similar manner as in Art. 20.
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If the function contains three independent variables, as

u= f {x,y,z)

by proceeding in like manner the following results will be

obtained

:

d^u d^u d^u d^u d^u d^u= , =
,

=
. (9)

dxdy dydx dxdz dzdx dydz dzdy

If the function contains four independent variables, there

will be six of these equalities, if five there will be ten, and so on.

Special Rates

22. Let u={x + yY, (1)

then, by taking the rate first with respect to x and secondly

with respect to y, the following are found,

du^n{x -{-yy-^dx (2)

and du^=n {x -\- yY-'^dy. (3)

Dividing the first by dx and the second by dy gives

du = n{x + yy-^ (4)
dx

du
and — ==M (;^-[-y)"-i

(5)
dy

in which it will be observed that the right-hand members are

identical.

The sum of (2) and (3) is

du= n (x -\- y)^-^(dx -\- dy),

virtually the same as given in Art. 13.

Classified Rates

23. When the partial rates of a function of two or more
independent variables are taken with respect to one variable

only, they are said to be of the first class; when taken with
respect to one variable and that rate taken with respect to an-

other variable, they are said to be of the second class : thus, if

u= x^y'-\-x'y, (1)

by taking the rate with respect to x only, the results are

du= Sx^y^dx -f 2xydx
d^u= dxyHx'' -f 2ydx^

and d^u= dyHx^,

which are partial rates of the first class.
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Taking the rate of ( 1 ) , with respect to x gives

du= Sx^y^dx + 2xydx (2)

and this rate taken with respect to y is

d^u= 6x^ydxdy + 2xdxdy

;

( 3 )

(2) and (3) are partial rates of the second class.

Maclaurin's Theorem
This theorem explains the method of developing into a

series a function of a single independent variable.

24. Assume the development to be

f(x)=A+Bx + Cx' + Dx^ + etc., (1)

in which A, B, C, D, etc. are constants whose values depend
entirely upon those which enter / {x).

Now in order to determine the values of A, B, C, D, etc.

such as will render the assumed development true for all

values of x, let

u= A + Bx + Cx^ + Dx^ + etc. (2)

and of this find the ratal coefficient, as in Art. 20; thus

du
B + 2Cx + ZDx~ + etc. (3)

dx

dH

dx^

dH

= 2C + 2- 3Dx + etc. (4)

= 2' 3D + etc. (5)
dx^'

Making ;r= 0, it will be found from (3), (4), (5), etc. that

du 1 d^u 1 d^u
B=— C= , \D= ,etc. (6)

dx 2 dx^ 2-3 dx^

Since A will retain the same value, whatever the value of x,

substituting the values of B, C, D, etc. in (2) will give

xdu x^d^u x^d^u
u= A + + + hetc, (7)^ dx 1 • 2dx'' 1 • 2 • 3dx'

the theorem of Maclaurin.

If the exponent of the variable is greater than unity, as

u= {a -\- bx^), assume bx^= v; then substitute for v and its

rates their values in the development of u ==(a -\- v).
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When the function or any of its ratal coefficients becomes
infinite by making its variable equal to zero, it can not be

developed by this theorem—as, for instance, u= ax^.

For an exemplification of this theorem, take

w=(a + ;j;)». (1)

Determining the ratal coefficient, as in Art. 20,

du

dx
(a + xy-^ (2)

d^u

dx'
= n (n —-1) (a + x)-' (3)

d^u

dx^~
= n (n—\) (n— 2) (a + xy^-^ etc. (4)

Making x-= 0, then from (2), (3), and (4) are found

du

dx
'= «a"-^

d'u= n
dx'

(n—l)a«-2

d'u
n (n— 1) (n— 2) o"-

dx^

and from (1), when x^O, u= a^: that is, A^a^.
Substituting these values in (7) will give

na^-'^x n (n— 1 ) a^-'x'

^
1 ^ 1-2 ^

n (n— 1) (w— 2) a"-V
+ etc.,

1-2-3

the same as found by the binomial theorem.

EXAMPLES

1. u={l +xy 2. u=(a-{-bx)-^

Taylor's Theorem
25. This theorem explains the method of developing into

a series any function of the sum or difference of two inde-

pendent variables, according to the ascending powers of one
of them.
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Let u= f{x^y) (1)

and assume the development to be

u= A-\-By + Cy^ + D'f + etc., (2)

in which A, B, C, D, etc. are functions of x.

Now in order to find the values of A, B, C, D, etc., such as

will render the development true for all possible values which
may be ascribed to x and y, determine the ratal coefficients of

(1), first under the supposition that x varies and 3; remains

constant, then that y varies and x remains constant. By this

process it will be found that

du dA dB dC dD= + y + 3;^ + y^ + etc. (3)
dx dx dx dx dx

du
and = B + 2Cy + ZVy"" + etc., (4)

dy

but since these ratal coefficients are identical [see (4) and

(5) of Art. 22] it follows that

dA dB dC dD
B + 2Cy + 3Df-=-— + -—y + -j-y^ + -—y^+ etc., (5)

dx dx dx dx

in which the coefficients of like powers of y must evidently be

equal—that is,

dA dB dC
B = , C= and D= , (6)

dx 2dx 3dx

the rates of which are, regarding dx as constant,

d'A d'B dK
dB= , dC= , dD= ; (7)

dx 2dx 3dx

d^A d^B
also d^B = , dK= . (7)

dx 2dx

From (6) and (7) it will be readily found that

dA d^A d^B d^A5=
, C= and£>==

dx 2dx^ 2 3dx^ 2-3dx^

Substituting these values of B, C, and D in (2) will give

dA d^A d'A
u=A^ y + 3/2 + y' + etc., (8)

dx 2dx^ 2 • 3dx^

known as the theorem of Taylor.
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In like manner the development of u= f (x— 3;) will be

found to be

dA d^A d^A
u= A— 3; + 3/2— y _(_etc. (9)

dx 2dx^ 2
' 3dx^

Although this theorem gives the general development of

every function of the sum or difference of two variables cor-

rectly, yet in some particular cases a certain value may be

ascribed to the variable x which will render the development
impossible, as will be indicated by some of the ratal coefficients

of the development becoming equal to infinity: thus, if in

u^a -{- (b -{- X— 3;)^

y be made equal to zero, then

A = a+(b + x)\

the first and second ratal coefficients of which are

dA 1 d'A 1

and
dx 2{b + xY^ dx' A{b + xy'^

both of which become equal to infinity when x=— b.

For an exemplification of the theorem, develop

w= (jf + yY.
Making y^O gives

w= ^ = jj;",

the successive ratal coefficients of which are, from Art. 20,

dA d'A= nx''-^, = n (n—1 ) x'''^,

dx dx^

d^A = n (n— 1) (n— 2) x^~^, etc.

dx'

Substituting these values in formula (8), the result is

n (n— 1)
u= x'^ + nx'^-'^y + x^'-^y^ -{-

n (n— 1) {n— 2)
x^-^y^ 4- etc.,

the same as found by the binomial theorem.

EXAMPLES

1. u=(x + y)'^ 2. u={x-\-ayy^
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Transcendental Functions
26. Let the function be

u= a<'. (1)

Assuming a=\ -\- c,

then u= {I -\- c)^,

the development of which, by the binomial theorem, is

u=l+xc +—^ -c'~ +• ^ — -c' +
2 2-3

x(x —l) {x— 2) (^— 3)

2-3-4

Passing to the rate,

2x—\ 3x^— 6x-^2
du^ (c 4- c^ -\- c^ +

2 2-3

4x'—lSx^ + 22x'—6
' c^ + etc.) dx. (3)

2-3-4

Dividing each member of (3) by the corresponding mem-
bers of (2) gives

du c^ c^ c*

={c^- + -—- + ^tc.)dx, (4)
u 2 3 4

which is the ordinary logarithmic series for log (1+ c), that

c^ c^ c^
is log(l+c)==c— — + ——— + etc. (5)

2 3 4

But \ -{- c=^a, therefore

du = dx log a.

u

Substituting for u its value and multiplying by a'^,

du= a'^dx log a. ( 6 )

Substituting in (4) for u and c their values and multiplying

by a*, the result is

a— I (a—iy
du= a^ ( — +

1 2

(a— iy (a—iy
,

3
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Assuming

a—l (a—iy (a—iy (a—iy
+

;:

—
; + etC.=e

1 2 3

then du= a''edx, (7)

wherein e is dependent on a for its value, which may be de-

termined by Maclaurin's theorem.

Since the rate of u=a'^ is du= a'^edx, (7), it is evident,

e being constant, that the rate of du= a^edx is d^u= a'^e^dx^

and the rate of d^u= a^e^dx^ is d^u= a'^e^dx^. Therefore,

the ratal coefficients are, from Art. 20,

du d^u d'^u= a'^e^, = a^e^, etc.

dx dx^ dx^

Making x= in (1), also in the ratal coefficients, it will

be found that

du d^u d^u
u=\, =^, ^e^, ^£?^etc.

dx dx^ dx^

Substituting these values in (7), Art. 24, gives

ex e^x^ e^x^
w= a-= 1

+-- + —-- + --— + etc.

.1 2 2-3

1

If x= —, then
e

1 1 1

o'^= 1 -1- — -|- — -u _u etc.12 2-3

The sum of the first twelve terms of this series is 2.7182818,

which is the base of the Naperian system of logarithms ; hence

e is the Naperian logarithm of a. Therefore, substituting

log a for e in (7), then

du= a'^dx log a,

the same as (6).

Hence the rate of an exponential function is the function

into the rate of the exponent multiplied by the Naperian log-

arithm of the constant of which the variable is the exponent.
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27. Resuming (1) of the last article, transposing it, and
taking the logarithm of both members give

X log a= log M,

log w
whence x= . (1)

log a

Now it has been shown in the last article, that the rate of

M= o« is

du= a'^dx log a,

du
whence dx=

a^ log a

or, substituting for a^ its value, from ( 1 ) of Art. 26,

du
dx=— , (2)

wloga
the rate of (1).

If o is the base of a system of logarithms, then x is the

1

logarithm of u in that system, and is the modulus of the
logo

1

system; therefore representing by M, (2) becomes
log a

du
dx=M . (3)

u

Hence the rate of the logarithm of a quantity is' the modulus

of the system into the rate of the quantity, divided by the

quantity itself.

The modulus of the Naperian system of logarithms is

unity; therefore if the logarithms are taken in the Naperian

system (3) becomes

du
dx= .

u

Hence the rate of the Naperian logarithm of a quantity is

the rate of the quantity divided by the quantity itself.

28. To determine the rate of

in which both v and x are variables.
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Taking the logarithm of both members,

log U= X log Vy

and passing to the rate, by Arts. 26 and 9,

du xdv= + dx log V,

u V

uxdv
or du= + ^^ log ^•

V

Substituting V^ for u and reducing,

du= xv'^-^dv + v'^dx log V. ( 1

)

Hence the rate of a variable quantity having a variable

exponent is the sum of the rates obtained, first under the sup-

position that the quantity varies and the exponent remains

constant, then that the exponent varies and the quantity remains

constant.

29. Take u= \og{\+x), (1)

in which u is the Naperian logarithm of \ -\- x, and the suc-

cessive ratal coefficients are

• du 1 d'^u 1 d^u 1 • 2
-, etc.

dx \-^x dx^ (1+-^)' dx^ (1+^)'

Making jt= in ( 1 ) , also in the ratal coefficients, then

du d^u
• u= 0, =1, =— 1,

dx dx^

d^u d^u
=1-2, =— l-2-3,etc.

dx' dx^

and consequently, by substitution in (7) of Art. 24,

w= log(l+;r)=;r—^ + ^—^ + etc. (2)

[see (5) of Art. 26].

Developing u= log (1 — x)
in like manner, it will be found that

x^ x' X*
w= log(l

—

x) ^=— X——————— etc. (3)
^

2 3 4



l+x v+1
1—x

x= —

)

V

1
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Subtracting (3) from (2) gives

log(l+^)— log(l—^)=2(^+^ + ^Vetc.)(4)
3 b

l-\-x z/4-1
Assuming

then
2v+l

therefore, since

?7+ 1

log ( )=log (z/+ 1) —logv,
V

by substituting the value of x in (4), the following is obtained

:

log {v -\- I) — log V=
1 1 1

2 [ + + + etc.],
(2z;+l) 3(2z/+l)3 b{2v-\-iy

or log (v -{- I) ^^\ogv -\-111
2 [ + + +etc.],

(27/+1) 3(2z;+l)^ 5(2z/+l)^

by which the logarithm oi v -\- I can readily be found when

the logarithm of v is known. Thus, if

1 1 1

v=l, log 2= + 2(—+ + +etc.)= 0.69314718
3 3-3^ 5- 3^

1 1 1

v=2, log 3= log 2 + 2(—+ + + etc.)= 1.09861229
5 3-5^ 5- 5^

z/=3, log 4= log 2 + log 2 = 1.38629436

1 1 1

v=4, log 5= log 4 + 2(—+ + + etc.)= 1.60943791^ ^ ^9 3-93 5-9^

z/=5, log 6= log 2 + log 3 =1.79175947

1 1 1

v=6, log 7= log 6 + 2(—+ + + etc.)= 1.94591014^ ^ ^ ^13 313^ 5-13^

v=7, log 8= log 2 + log 4 = 2.07944154

v=S, log 9= log 3 + log 3 = 2.19722458

i;=9, log 10= log 2 + log 5 =2.30258509
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The logarithm of 10 in the common system is 1, and in the

Naperian system is 2.30258509; 1 divided by 2.30258509 is

0.43429448, the modulus of the common system, usually desig-

nated by M.

To avoid inconvenience, the Naperian logarithms are gen-

erally used in this work. Whenever the common system may
desired, it will be necessary to multiply by the modulus of that

system.

EXAMPLES

To determine the rate of

w^log
(a2_^^2)%

Assuming ii= (1)
(a^ + •*

)

dv
then u^Xogv and du^= . (2)

From ( 1 ) , by passing to the rate,

{a^ + x^)"^ dx -^ x^ {a^ + x^Y'^dx
dv=

(a^-i-x^)

a^dx
or, reducing, dv=-—-——-. (3)

(a^ + -^ )

^

Substituting for v and dv their values in (2) gives

a^dx
du^

X (a^-\-x^)

a^ + h'" log X
1. w= 2. u

a^ + h^ log y

,
(l+x) + (l+y)

(1+^) — (l+y)

What is the rate of the common logarithm 4300?

Illustrations of Principles Relative to Curves

30. If a particle impelled from A toward B along the curve
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E Fy-

/
^ ^^

P G

D

¥\g.5

X

APB (see figure) be left to itself at any point in the curve,

as at P, it is obvious that

it would then proceed at a
uniform rate toward C along

the straight line PC tangent

to the curve at P.

For the point P, let x re-

present the abscissa AB, y the

ordinate DP, and z the curve
AP. Extend DP to E, and
draw EF and PG parallel to

AX\ also draw EP and FG
parallel to AY . Then dx will

be represented by PG, dy by
£P, and dz by PF ; hence

dz^= dx^ + ^Z or dz= (dx' + c?/)v^

Circular Functions

To determine the rate of

u= sin X,

let the radius AC^BC= R (see

figure), the arc AB^x, and, as the

case may be, let u represent the sine,

cosine, tangent, etc. of the arc x;

then we have, by Art. 30, BE= dx,

BD equal to the sine, CD the cosine,

EF the rate of the sine, and BE the

rate of the cosine ; hence

BC:CD::BE:EF
or R : cos x::dx: du,

cos xdx

31

F-ig

whence du
R

Therefore the rate of the sine of an arc is equal to the

cosine of the arc into the rate of the arc, divided by the radius.

If u= cos X,

then, since w, the cosine CD, is a decreasing function of the

arc X, its rate is negative ; therefore

sin xdx
R : sin X : : dx :— du or du

R
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Hence the rate of the cosine is minus the sine into the rate

of the arc, divided by the radius.

If u= Yers x= R— cos jr,

sin xdx
then du

=

R
Hence the rate of the versed sine is the sine into the rate of

the arcy divided by the radius.

R smx
If u= tan X=

,

cos X

then, by passing to the rate, by Art. 19,

cos^ xdx + sin^ xdx
du^ ,

cos^ X

or, since cos^ x + sin^ x= R^,

R^dx

COS^ X

Therefore the rate of the tangent of an arc is equal to the

square of the radius into the rate of the arc, divided by the

square of the cosine.

R cos^
If u^cotx= ,

sin;f

then, passing to the rate, by Art. 19,

(cos^ X + sin^ x) dx
du=

sin^ X

or, since cos^ x + sin^ x= R^,

R'dx
du

sin^ X

Therefore the rate of the cotangent is equal to minus the

square of the radius into the rate of the arc, divided by the

square of the sine.

R'
If u= secx^ ,

cos X

then, passing to the rate,

R^ sin xdx
du=

cos^ X
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Therefore the rate of the secant is the square of the radius

into the sine multiplied by the rate of the arc, divided by the

square of the cosine.

R^
If u= cosec X=— ,

sin;ir

R^ cos xdx
then du^— .

Therefore the rate of the cosecant is equal to minus the

square of the radius into the cosine multiplied by the rate of

the arc, divided by the square of the sine.

If i?= l, then for

u= sin X, du= cos xdx,

u= cos X, du=— sin xdx,

u= vers X, du= sin xdx,

u= tan X, dx
du= , etc.

COS^ X

If u= smrx, (1)

by assuming rx= v, then will smrx= s'mv,

whence dv= rdx and du= d (sin rx) =^ cos vdv. (2)

Substituting these values of v and dv in (1), then

du^^r cos rxdx.

If w==sin";i;, (3)

by assuming sin;»;= 7;, then will sin»^ ;ir= z/",

whence dv= cos xdx and du= d (sin" x) = nv'^-'^dv. (4)

Substituting these values of v and dv in (4) gives

du= n sin""^ x cos xdx.

If u= sm*^^:^^inrx, (5)

then du= d (sin";ir) sin rx + a (sin rx) sin" x

;

but, as shown, d (sin" x) =n sin""^ x cos xdx

and d (sin rx) = r cos rxdx

;

therefore

du= (n sin"-^ x cos x sin rx -\- r cos rx sin" x) dx,

or fl?w= sin"~^ x {n cos ;r sin rx -\- r cos r;tr sin ;tr) dx.

By use of these equations, the rates of like expressions of

the cosine, versed sine, tangent, etc., can be determined.
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32. For radius R and

w= log sin X,

by passing to the rate, by Arts. 27 and 31,

cos xdx

R sin jir

the rate of the logarithmic sine of the arc x.

If w= logcos;r,

sin xdx
then du=— ,

R cos;r

the rate of the logarithmic cosine of the arc x.

If w= log vers x

or its equivalent, u= log {R— cos x)^

sin xdx
then du

R (R— cosx)

sin xdx
or du

R vers x

the rate of the logarithmic versed sine of the arc x.

If u= log tan X

R sin^r
or, since tan x= ,

cos X

R sin jt

u= log ( ) ;

cos X

then, passing to the rate, by Arts. 27 and 31, and reducing,

cos^ xdx + sin^ xdx
du= ;

R sin X cos x

or, since cos^ x + sin^ x= R^,

Rdx
du= .

sm X cos X

the rate of the logarithmic tangent of the arc x.

R cos AT

If u= log cot X= log
sin jT
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— (sin^ xdx -\- cos^ xdx) R cos x
then du= -^

sin x^ sin x

or, since sin^ x + cos^ x= R^, by reducing

Rdx
du

sin X cos JIT

the rate of the logarithmic cotangent of the arc x.

R^
If w= log sec ;ir= log

then du=
cos X

R^ sin xdx R^ sin xdx

R cos^ X cos ;tr i^ cos x

R sinjir

or, since = tan;i;,

cosj^r

tan xdx
du= ,

R'

the rate of the logarithmic secant of the arc x.

In like manner the rate of

u= log cosec X

cot xdx
will be found to be du^— .

R'

In using the common system of logarithms, for

M cos xdx
u= log sin X, du=

u= log vers x, du=

u =log cos X, du=

R sin;j;

M sin xdx
>

R vers x

M sin xdx

R cos X

MRdx
u= log tan X, du=

sm X cos X

MRdx
u= log cot X, du=— —

, etc.

sin X cos X

33. It is often desirable to have the rate of the arc in

terms of that of its sine, cosine, tangent, etc., and for this
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purpose the following expressions are employed: namely,

X= sin~^ u, x= cos"^ u, x= tan"^ u, etc. , x being the arc and

u its sine, cosine, etc.

Let X= sin~^ u
,

its equivalent being u= sin x,

the rate of which is, by Art. 31,

cos xdx
du

whence dx=
R
Rdu

cos;r

or, since sin x^u, consequently cos x= {R^— w^) ^%

Rdu
dx

the rate of the arc in terms of the sine and its rate.

In like manner, if x^ cos'^ u,

Rdu
it will be found that dx^

the rate of the arc in terms of the cosine and its rate.

If x^ vers"^ u,

its equivalent being u= vers x= R— cos x,

the rate of which is, by Art. 31,

sin xdx

R
Rdu

du-

whence dx
sin.ar

Now sin .r= {R"^— cos x'^Y^,

but

cos x= R— vers x= R— u;
therefore

sin x={R'-^(R— uy}'^= (2Ru— w^) ^

.

Rdu
hence dx= ,

(ZRu— u^)"^

the rate of the arc in terms of the versed sine and its rate.
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If X-= tan-^ u,

the equivalent being

X-= tan X,

the rate of which is, by Art. 31,

xmVif>nri=' r

R'dx

cos^ xdu

R'

But sec^ x: R^::R^: cos^ x, or, since sec^ x^R^ -{- u^,

R'- + u^:R^::R^: cos^ x,

(1)

whence cos^ x
R^-{-u^

Substituting this value of cos^ jr in ( 1 ) gives

R^du
dx= ,

R^ + u^

the rate of the arc in terms of the tangent and its rate.

In like manner, if x= cot"^ u,

R^du
it will be found that dx=

R^ + u^

the rate of the arc in terms of the cotangent and its rate.

34. By means of Maclaurin's theorem, sin x, cos x, etc. can

be developed in terms of x : thus, if /^= 1, the ratal coefficients

of w= sin X are

d^u =— sin ;r

dx^

d^u = sin X
dx^

Making x= 0, then, from Art. 24,

du d^u d^u
A=0, =1, = 0, =— 1,

dx dx^ dx^

du

dx
= cos;r

d'u

dx^
=— cos .;»;

d'u

dx^
= cos X, etc.
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^= 0, =l,etc.
dx'' dx'

By substituting these values in Maclaurin's theorem the

following is obtained:

X x^ x^
w^ sin ;ir=—— + ,

— etc.

1 2-3 2-3-4-5

Proceeding in like manner, it will be found from u= cos x

x^ x'
that w= 1 —— + — etc.

1 2-3-4

EXAMPLES

Determine the rates of the following:

u= sin x^ u= tan x^

u= smx cos x u= cosx sin X

u= tanx log cot X u= log tan X + log cot x

;r= sin-^2w (1 — u)
u

X— cos~^
a— u

b
X= tan~^ —

u

Develop x= s'lrr^ u.

Vanishing Fractions

35. A vanishing fraction is one which reduces to the form

— when a particular value is given to the variable. Thus,

c (x— a)

reduces to — when x= a. This, it will be seen, is owing to a

factor common to both numerator and denominator which
reduces to zero for x= a.

Let the equation be

u=- (1)
(x"— a«)»
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and put it under the form

(x— ay [x"^-^ + amx'''-^ -\- a^ m {m— l)x'''-^ H a'^-'^y

u=
(x— a)* {x"-^ + anx''-'^ + a^'n (n— 1 ) x""-^ + • • • .a"-^}*

Now the right-hand portion of this fraction does not reduce

to zero for x^a; therefore, making it equal to R, then

(x— ay
u= R- -. (2)

(x— a)'

Let (x— a)^= P, and (x— a)s==Q, both of which

reduce to zero for x^a; then

RP
(3)u —

Q
'

or Qu= RP.

Passing to the rate,

Qdu + udQ = RdP + PdR,

butQ:= OandP= 0; therefore

udQ =--RdP
dP

or u= R
dQ'

hence,
RP

since u— , (3)

^P o ^^
n', = R — --

Q
= R .

dQ

If both dP and dQ reduce to zero for x= a, then by pass-

ing to the rate again

dP d'P
R = R ;

dQ d'Q

P dP d^P
therefore u==R —= R = R .

dQ d^Q

Should this also reduce to zero for x^a, by continuing

the process a fraction may be found which will not reduce to

zero for x= a, and thus the true value of the primitive fraction

will be obtained.*

* It will be observed that the process employed simply eliminates the

vanishing factor, thus giving the real value of the fraction.
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Let u={bx'--{- ex) ( ), (4)
X— a

in which m= 2, n=l, and bx'-^ -\- ex represents R, and its

rate is

d(x^— a^) 2xdx
u=(bx' + ex) ={bx'' H- ex) = 2bx'-\-2ex'

d (x— a) dx

or, when x= a, u= 2a^b -\-2a^e. (5)

Multiplying {bx^ -\- ex) by {x^— a^) in (4) gives

bx'^ + ex^— a^bx^— a^ex
u= .

X— a

Therefore

(4bx' + 3cx'^2a'bx— a^c) dx
u^

dx

4bx^ + 3ex^— 2a^bx— a%

or, when X= ia, u= 2a^b + 2a^e,

the same result as (5).

If

Xn on

u— -,

X— a

then u
dix""— a") nx'^-^dx

/,j, A/-n—i-~
d (x— a)

~ dx
nX

or, when x= ^a, w= na^~^.

If

(;^2_ ^2)3/2

u= .

by squaring and then taking the cube root,

,2/3

(x— a)

2xdx
Therefore w^/^= = 2x

dx
or, when x= a,

^2/8= 20 or M=(2a)«/2.
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EXAMPLES

aV (a— x)
tl

{X--— a'Y

{X^— a^Y

{X-— lax'' + a«)^

(x^ ci2y.

1/

x^— 2ax' + a'x

3/2

(2ax^— 2a^y^

(x^-\-a^x— 2a^)'^

a— X -\- a log X— a log a

x^— a^ a— (2ax— x)"^

fj^X qX

Determine the value of w= , when ;ir^ 0.

x{x + c)

Determine the value of

cos X— sin ;«; + 1

-, when ;r= 90°.
cos ;r + sin ;i;— 1

In some cases both P and Q become infinite for a particular

value of the variable : thus

tan;i;
V,— -

cot2;r

becomes -
00— when X
00

= 90°.

Now tan;r= 1

anc
cot;r

1 <~n+ '^ 1-
1 cot LX ,

tan2;ir

fV«^fo -f/-» f<»
tan;ir tan2;r

1 . ., . . .. c\r\o

cot2;i; cot jr

2dx

— , wlien X— 9U

Hence w =
cos" 2x 2 sin^ X

— dx zo^^lx

sm^jir

or, since sin ;jr= 1 and cos 2;r=— 1 when ;ir= 90°,

w=— 2.

Sometimes in a product one factor becomes zero and the
other infinite for a particular value of the variable: thus, in

W=(l x)\2iX).— TrX (6)



ON VARIABLE QUANTITIES 37

1 1

(1— x) ^0 and tan— ir;jr=oo, when x=l and — 7r= 90°.
2 2

1 1
. .

Since tan— ir ;ir=
2

then

•ir;<[T —= -
, ^u; can uc

cot— TT ;r

2

1— ;r

cot— IT ;r

2

1— rfjir 2 sin^ — irx
2

— irdx V
2

1

sin^ — TTX
2

1 1

Therefore, when x^l and — tt= 90°, since sin — tt ;ir then
2 2

equals 1,

2
w=—

.

TT

Of the difference of two quantities, both sometimes become
infinite for a particular value of the variable : thus, in

«=^—7^, (7)
X 1 lOgX

X 1

when ^=1, both and. become infinite.

X— 1 log X

In this case put (7) under the form

X log X X -\-\

(x— 1) log^r

which becomes — when x=l; therefore

d(x\ogx— ^+1) ;rlog;r
u= = —

-

d (x— 1 ) log ;»; x\ogx + x— 1
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This also becomes — when x=l, consequently

xdx
dx\ogx +

X log ;i; + 1

xdx log ;i; + 1 + 1

dx log X + + dx
X

or, when x=l, since log 1=0,
1

u^—

.

2

EXAMPLE

Determine the value of

u^x tan X—
2 cos X

, when ji;^90^

Curves Referred to Rectangular Coordinates

36. Signification of the first and second ratal coefficients.

Every curve or line referred to rectangular coordinates

may generally be represented by the equation

y= fix)

in which x represents any abscissa, as AB, and 3; the cor-

responding ordinate BP, of the curve CPD (see figure).

Fi g-

Draw TT^ tangent to the curve CPD at P, and with radius

unity draw the arc EH, also draw EK tangent to EH. Then
the angle T'TX will be the angle of tangency, so called, and
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EK its tangent, which is designated by /. Now let dx be re-

presented by PG, and dy by GF (see Art. 30) ; then will

dx:dy::TE:EK

or, since TE=l, and EK= t, by representing the rate of

/ (x) by /' (X)

dx:dy::l:t,

whence
dy

dx

Passing to the rate and representing the rate oi f {x) by

r (^),
dt d^y

dx dx^

Hence the first ratal coefficient of the equation of a curve

represents the tangent of the angle of tangency of any point of

the curve and the second ratal coefficient represents the rate of
variation of the tangent of the angle of tangency.

Z7. Of a curve concave to the axis of X (Fig. 8), the

angle of tangency and consequently its tangent t decrease as

the ordinate increases, as is clearly shown by the tangents TP
and T'P' of the curve CPP'D.

This, it will be observed, is also true of the curve C'QQ'D\
as indicated by the tangents TQ and T'Q' ; but, lying below

the axis of X, the angle of tangency and its tangent, as well as

the ordinate, are negative, while those above the axis are

positive.

Now, since the rate of a positive decreasing function is

negative and that of a negative decreasing function is positive,
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the rate of the tangent of the angle of tangency of the curve

CPP'D is negative, while that of the curve C'QQ'D' is posi-

tive. Therefore, since t represents the tangent of the angle

of tangency, when a curve is concave to the axis of x and its

ordinate is positive, dt, and consequently the second ratal co-

efficient of the equation of the curve, are negative, hut positive

when the ordinate is negative.

If the curve is convex to the axis of X (Fig. 9), the angle

of tangency, and consequently its tangent t, increase as the

ordinate increases, as is shown by the tangents TP and T'P'

of the curve CPP'D.

This is also true of the curve C'QQ'P' , as indicated by
the tangents TQ and T'Q' ; but as they lie below the axis of X,
the- angle of tangency and its tangent, as well as the ordinate,

are negative.

Therefore, since the rate of a positive increasing function is

positive, and that of a negative increasing function is negative,

the rate of the tangent of the angle of tangency for any point of

the curve CPP'D is positive, while that of the tangency for any
point of the curve C'QQ'D' is negative.

Hence when a curve is convex to the axis of X, and its

ordinate is positive and increasing, dt, and consequently the

second ratal coefficient of the equation of the curve, are posi-

tive, but negative when the ordinate is negative.

From what precedes, the following conclusion is evident:
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When the second ratal coefficient of the equation of a curve

is negative^ the curve is either concave to and above the axis of

X or convex to and below it; but when the second ratal co-

efficient is positive, the curve is either concave to and below the

axis or convex to and above it.

Sometimes a particular value of x, as x^a, will make
d^y= 0. In this case, substitute a±v for x : then, for a small
dx'

d^y
value of V, if and the ordinate corresponding to x^a

dx^

have contrary signs, the curve is concave to the axis of X at a

point in the curve whose abscissa is x= a, but if like signs,

convex.

E. g., let the equation of the curve be

y= x^— Sx^-\- AOx-— mx + 58.

Passing to the rate twice,

d^y= 20;r^— GOx"" + 80, (1)
dx^

in which = when x= 2; therefore, substituting 2 ±v
dx^

for ;ir in ( 1 ) gives

d^y = 60z;2 Hh 20z;3

dx^

d^y
or = 20z/2 (3±z/),

dx^
^

which is positive for any value of t; < 3. Hence, since 3;= 10

when x= 2, the curve is convex to the axis of X at the point

whose abscissa is x^2.
Determine whether the curve whose equation is

y=S^Ax— x'',

is concave or convex to the axis of X.

Ratal Equations of Lines

38. A ratal equation of a line is one which shows the rela-

tion between the coordinates and their rates, and, being inde-

pendent of the values of the constants which enter the primitive
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equation, determines the general nature of the Une without

regard to its magnitude.

First take the general equation of lines of the first order

y=zax -{- b,

dy
whence "—= «,

ax

a result which is the same for all values of b. This equation

represents the tangent of the angle of tangency (see Art. 36)

and is the first ratal equation of lines of the first order.

Passing to the rate again

dy d^y
d-^= or -^= 0,
dx dx^

an equation entirely independent of the values of a and b and
consequently equally applicable to every line of the first order

which can be drawn in the plane of the coordinate axes. It is

called the general ratal equation of lines of the first order.

d~y
The equation = shows that the tangent of the angle

dx^

of tangency has no variation (see Art. 37) ; hence every line

of the first order must necessarily be a straight line.

39. In the general equation of lines of the second order

y2^ax'^bx-{-c, (1)

passing to the rate thrice will give

2ydy
2ax + b (2)

(3)

= 0; (4)
dx^ dx^

equations (2), (3), and (4) are respectively the first, second,

and general ratal equations of lines of the second order.

When the origin of coordinates is at the vertex of the trans-

verse axis, the general equation of lines of the second order is

y^= ax^-{-bx. (5)



ON VARIABLE QUANTITIES 43

Passing to the rate twice

2ydy= 2axdx -f- hdx (6)

and dy^ + y^^y= cidx"^. (7)

Eliminating a and h m (5) by means of (6) and (7)

y^dx^ + x^dy^ -\- x^yd^y— 2xydxdy= 0,

a general ratal equation of lines of the second order, when the

origin of the coordinates is at the vertex of the transverse axis,

differing from (4) on account of passing to the rate but twice.

Determine the general ratal equations of the circle, para-

bola, and ellipse.

Tangents and Normals
40. If ;ir and 3; represent the coordinates of any point of the

curve APC, and z the corresponding arc AP, Art. 30, dx will

E be represented by
DP, dy by DE, and

C dz by PE, a tan-

gent to the curve at

the point P ] also
Fig. 10 TR represents the

subtangent, TP the

tangent, RN the
subnormal, and PN
the normal, each of

R N XT A
which are obtained as follows

:

DE:DP::PR:TR;
that is, dy:dx::y: TR,

ydx
or TR= -—

.

dy

TP^= PR^ + 7/^2

.

y^dx"^

(1)

that is, TP^= y^ ^
dy^

or

that is,

or

TP= ^^{dx^ + dy^y^.
dy

DP:DE::PR:RN;
dx:dy::y: RN

ydy

(2)

RN
dx

(3)
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PN^= PR^-j-RN^;

that is, PN'= y' + y'---

or PN= -^{dx'^dy'yK (4)
dx

1. Hence the length of the suhtangent to any point of a

curve is equal to the ordinate into the rate of the abscissa

divided by the rate of the ordinate.

2. The length of the tangent to any point of a curve is

equal to the ordinate divided by the rate of the abscissa, into

the square root of the sum of the squares of the rates of the

abscissa and ordinate.

3. The length of the subnormal to any point of a curve is

equal to the ordinate into its rate divided by the rate of the

abscissa.

4. The length of the normal to any point of a curve is equal

to the ordinate divided by the rate of the abscissa, into the

square root of the sum of the squares of the rates of the

abscissa and ordinate.

The tangent TP may also be obtained thus

:

DE:PE::PR:TP;

that is, dy.dz'.'.y: TP

dz
or TP= y--. (5)

dy

Likewise, for the normal PN,

DP:PE::PR:PN;
that is, dx:dz\:y: PN

dz
or PN= y . (6)

dx

In the application of these formulas to any particular curve,

dx dy
the value of or , obtained from the equation of the

dy dx

curve by passing to the rate, must be substituted in each of

them. The result will be true for all points of the curve ; then,

by substituting therein the values of x and y for any particular
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point of the curve, we can find the value of the subtangent,

tangent, subnormal, and normal for that point.

41. To apply the formulas of the preceding articles to lines

of the second order, whose general equation is

3/2= (1^2 _|_ ^^ _j_ ^^

and its rate

dy lax + h 2ax + b

dx~ 2y ~ 2 {ax^ ^ hx -{- c)"^
'

dy
Substituting the value of in formulas (1), (2), (3),

dx
and (4) of Art. 40, will give

dx 2{ax^ -\- hx -\- c)
TR= y

=
dy 2ax -\- b

TP=—(dx' + dy^)'^=
dy

ax^ 4- bx 4- c

vw^' + bx + c+4 (
—-

—

-—-r)
2ax -\- b

dy 2ax 4- b
RN= y

dx 2

y 1

PN= (dx^ + dy^)'^=-\/{ax^ -^. bx + c + —(2ax + by).
dx 4

By giving proper values to a, b, and c, these formulas will

become applicable to any line of the second order.

In the case of the parabola, a= 0, b= 2p, and c= 0;

therefore TR= 2x

TP= (2px + ix^)"^

RN= p
PN=(2px + p^)'^.

EXAMPLES

The major axis of an ellipse is 40 inches and the minor
axis is 20 inches. What are the lengths of the tangent, sub-

tangent, normal, and subnormal?

The transverse axis of a hyperbola is 6 inches and the

conjugate axis is 4 inches. What is the length of the sub-

normal corresponding to an abscissa of 9 inches, the equation
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being: y^= x'' 52?

The Cycloid

42. If a circle, NPG, be rolled along a straight line AC^
any point P of its circumference will describe a curve called

a cycloid. The circle NPG is called the generating circle and

the point P is called the generating point.

The line ^C is equal to the circumference of the generat-

ing circle and is

called the base of

the cycloid, and the

line BD, drawn
perpendicular to it

at its middle point,

is called the axis

of the cycloid and
is equal to the di-

^ ameter of the gen-

erating circle.

In determining

the equation of the cycloid, take the origin of the co5rdinates

at A and suppose that the generating point has described the

arc AP ] then if N be the point at which the generating circle

touches the base, AN will be equal to the arc NP.

Draw NG, the diameter of the generating circle, PR perpen-

dicular to the base, and PH parallel to it ; then PR will be equal

to NH which is the versed sine of the arc NP.

Let NG= 2r, AR= x, and PR=HN= y; then

TAR

RN=PH= {NH- HG)^= {y 2r— yY^= {2ry— y^y/-
',

also X =AR= AN— RN= arcNP— PH.

Therefore, since NP is the arc whose versed sine is NH or

y (that is, NP= vers -^y),

x==\QTs-^y— (2ry— y^)"^ (1)

which is the transcendental equation of the cycloid.

rdy
The rate of vers "^3; is and that of {2ry—y^Y

(2ry—y)^
rdy— ydy

is ; therefore
(2^3;— /)%'
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rdy rdy— ydy
dx= —

{2ry— y^y^ {2ry— y^y^

ydy
or dx^ , (2)

(2r3;— /)^
which is the ratal equation of the cycloid.

43. Dividing both members of (2) of the preceding article

by dy, gives

dx y

dy {2ry— y'^y^

dx
then, by substitujting this value of in formulas (1), (2),

dy

(3), and (4) of Art. 40, the values of subtangent, tangent,

subnormal, and normal for any point of the cycloid are as

follows

:

TR=

TP=
(2ry— y2)%

y {2ry)^

(2ry— y^)'^

/eiV= (2ry— y2)%

PN=\/(2ry).

The Logarithmic Curve

44. The logarithmic curve takes its name from the pro-

perty that, when referred to rectangular axes, any abscissa is

equal to the logarithm of the corresponding ordinate; hence

the equation of the curve is

X= log y.

Ha represents the base of one system of logarithms, and b

that of another, then
a^z=y and b'^= y;

from which it is evident that for every different base the same
value of X will give a different value for y; that is, every dif-

ferent logarithmic base will give a different logarithmic curve.

If we make x= 0, y=l; therefore, since this relation is

independent of the base of the system, it follows that every

logarithmic curve will intersect the axis of ordinates at a dis-

tance from the origin equal to unity.

From a'^= y
the curve can be described by points even without the aid of

a table of logarithms ; thus
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Y x= 0, ^= 1;

D^ ^=1, y= a]

^= 2, y^a^
>

^=— 1, y= a-'^
»

^=— 2, y= a-^ , etc.

C Then if the origin

F-
^

-1

d 1 d d'

is at ^ (

BCD will

see Fig. 12),

be the curve.

.1 Resuming the

tion of the curve,

equa-A X
^'•g- \Z x == logy;

then, if M represents the modulus of the system, the rate ls

T
Mdy

dx=

dx

y

M
or

dy

Substituting this value of

gives

r

dx

dy
in formula (1) of Art. 40

TR= y
dx

dy
M.

Figr. Iv3

las (2), (3), and (4) of Art. 40, then

Hence the subtangent

of the logarithmic curve

is constant and equal to

the modulus of the sys-

tem in which the loga-

rithms are taken (see

Fig. 13).

In the Naperian sys-

tem M= 1 ; consequently

the subtangent of the

curve in this system is

equal to unity or AB.

dx
If the value of

dy

be substituted in formu-
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RN=

PN

M

(y^-^M')\M
Asymptotes

45. An asymptote is a right line which continually ap-

proaches a curve and becomes tangent to it only at an infinite

distance from the origin of the coordinates.

Let A be the origin of the coordinates (see Fig. 14), and
let TE be tangent to the curve at P ; then, since the subtangent

dx
TR is equal to y and the abscissa AR= x,

dy

AT=TR— AR

or AT= y
dx

X.
dy

Also DP:DE::AT:AB
or, since DP is represented by dx, DE by dy, and

dx
AT= y

(1)

dx: dy::y

dy

dx

dy
x:AB,
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dy
whence AB= y— x . (2)

dx

If, when X and y become infinite, both of the expressions

(1) and (2) also become infinite, it is evident the curve has

no asymptote; but if either one or both of the expressions

reduce to a finite quantity, it may be inferred that the curve

has an asymptote.

If both expressions are finite, the asymptote will be in-

clined to both the coordinate axes ; if one becomes finite and

the other infinite, the asymptote will be parallel to one of the

coordinate axes; if both become zero, the asymptote will pass

through the origin of coordinates.

The general equation of lines of the second order is

y^= ax^ -\- bx -\- c.

Passing to the rate,

2ydy= {2ax + ^) dx,

dx 2y^
whence y =

dy 2ax + b

or, substituting for 2y^ its value,

dx 2ax^ + 2bx + 2c

dy 2ax + b

it will be found that

dy 2ax^ + bx

dx 2 (ax^ + bx + cy^

dx dy
Substituting these values of y and x in (1) and

dy dx
(2) gives

2ax^ 4- 2bx -\-2c bx 4- 2c
AT= ——— x= , (3)

2ax + b 2ax -\- b

AB = (ax^ + bx + c)"^

—

2ax'' -{-bx bx + 2c

2 (ax^ -i-bx-i- r)%
~~

2 (ax^ + bx + c)^
(4)
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The equation of the parabola is

y^= 2px;

hence in y^= ax^ -\- hx -\- Cj o= 0, b= 2p, and c= 0; there-

fore (3) and (4) become

2px
AT= ^x

2p

2px 1

and AB = = -^{2px).
2^{2px) 2^^ ' '

Making x infinite, these equations become infinite also;

therefore the parabola has no asymptote.

In the equation of the circle and ellipse, a in

3;2^ ax"^ + 6jr + c

is negative; consequently AB becomes imaginary when x is

infinite; therefore neither the circle nor the ellipse has an

asymptote.

The equation of the hyperbola is

f= x''— h^\

hence ^^0 in y^= ax^ -]- bx -\- c ; therefore (3) and (4)
become

2c c
AT

and AB

2ax ax

2c c

2 (ax^ + c)"^ (ax^^c)"^

When X is infinite both of these equations become equal to

zero ; hence the hyperbola has asymptotes, one to either branch

of the curve, both of which pass through the origin of coor-

dinates.

The equation of the logarithmic curve is

X= log y.
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Passing to the rate

dx
Mdy

dx dy xy
whence y =M and x =

.

dy dx M
Substituting these values in (1) and (2) gives

dx
AT= y — x=M— x

dy

and AB
dy

y
xy

dx M
When 3;= 0, ;»; is negative and infinite ; but when x is nega-

tive and infinite (5) and (6) become

AT= 00 and AB= 0;

hence the axis of abscissas of the logarithmic curve is an
asymptote to that branch of the curve which lies on the left

of the origin of the coordinates. (See Fig. 13 in Art. 44.)

Rates of Arc, Area, Surface, and Volume
OF Revolution

46. For the rate of an arc, see Art. 30, in which the

formula thereof will be found, viz.,

d2=(dx^-\-dy^y^,

z being the arc, x the abscissa, and 3; the ordinate.

Hence the rate of an arc is equal to the square root of the

sum of the square of the rates of the coordinates.

47. Let X represent

the abscissa AD (see

Fig. 15), 3' the ordinate

DP, and let PG or DH
be represented by dx,

the rate of x] then the

rate of increase of the

area APD will be repre-

sented by ydx. There-

X fore, if the area of APD
be represented by A, then

dA = ydx.



ON VARIABLE QUANTITIES 53

Hence the rate of the area of a segment of a curve is equal

to the ordinate into the rate of the abscissa.

48. Let X represent the abscissa AD, y the ordinate DP,
z the arc AP, and S
the surface of revolu-

tion made by the arc

AP in revolving round
AD or the axis of X

;

then the point P of

the curve APC will

describe a circle whose
radius is y and conse-

quently its circumfer-

ence 2 Try. Now it is

Pj w 1^ D^^ r' evident that if 2 Try be
o' ^ ^^^-- multiplied by dz

(which equals PT) the rate at which z, or the arc APC, is

increasing at P, then

dS^2 trydz,

or, substituting for dz its value from Art. 46,

dS= 2'Ky {dx^ -\- dy^)^.

Hence the rate of the surface of the volume of revolution

of an arc of a curve is equal to the circumference of a circle

whose radius is the ordinate of the arc, multiplied by the rate

of the arc.

49. Let X represent any abscissa, as AD, y the correspond-

P C
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ing ordinate DP, and let dx be represented by DH= PG ; then

dx multiplied by the area of the circle described by the point P,

in revolving round the axis of X, is equal to the rate at which

the volume of revolution is increasing when the arc is AP, and

consequently the ordinate is DP. Therefore, since DP^y,
iry^ is equal to" the area of the circle described by the point P;
consequently, if V represents the volume of revolution gen-

erated by the arc AP in revolving round the axis of X, then,

since PG= dx,

dV= TT y^dx.

Hence the rate of the volume of revolution of an arc of a

curve is equal to the area of the circle whose radius is the

ordinate of the arc, into the rate of the abscissa.

EXAMPLES

Determine the rate of an arc of the circle whose equation is

Passing to the rate,

x^dx^
ydy=— xdx or dy^= ,

3/2

but, by Art. 46, d:s= (dx^ + dy^)"^

;

therefore

x^dx^ dx
d2={dx^--{- )V2 or d2= (^' + /)

y' y

2\%

But, since y= {r^— x^)'^'' or {x^ + y^y^= r, then

rdx
dz=

Determine the rate of the area of the parabola ; also the rate

of the surface and volume of revolution of the hyperbola.

Radius of Curvature

50. Of curves tangent to each other and having a common
tangent line at the point of contact, the one which departs

most rapidly from the tangent line is said to have the greatest

curvature. The curvature of a circle is measured by the angle

formed by the radii drawn through the extremities of an arc

of a given length.

Let R and R^ represent the radii of two circles, a the length

of a given arc measured on the circumference of each, c the

angle formed by the radii drawn through the extremities of the
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arc of the one having radius R, and c' the angle similarly

formed by the radii of the one having radius R' ; then

27ri?:360°::a:c and 2 7ri^' : 360° : : a: c',

360° a 360° a
whence c= and c' =

27rR ZttR''

360° a 360°

a

1 1

ZttR 2'rvR' R R'

Hence the curvature in two different circles varies inversely

as their radii.

Make TNG a tangent line to the curve ANC, touching at

the point N, and NM a normal line thereto (see figure) ; then

, G

Fig
the circumference of every circle having its center in NM,
which may be described through the point N, will touch at N
both the curve ANC and the tangent line TNG.

Now it is obvious that the circumference of any such circle

which has a greater curvature than the curve ANC will depart

more rapidly from the tangent line than ANC and consequently

will fall wholly within ANC ; but any circumference which has

a less curvature than ANC will depart less rapidly from the

tangent line than ANC and consequently will fall between it

and TNG. Hence, since there may be circumferences of both

less and greater curvature than ANC, it follows that, with a

center in the line NM, a circumference may be described

through the point N whose curvature will correspond with that

of the curve ANC at iV—that is, which will depart from the

tangent line at A'' at the same rate as the curve ANC.
The circle, the curvature of whose circumference corre-

sponds with that of any curve at any point, is called the
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osculatory circle or circle of curvature, and its radius the radius

of curvature of the curve.

51. Let the curves BNC and DNE be tangent to each other

at N, and draw TNG a tangent line to both, touching at N (see

figure); also let y^=f {x) represent the curve BNC and

y'=f{x') that of DNE. Draw the ordinate LN ] then,

since LN is common to both curves, y= y' for the point N
]

also, since the angle LTN and consequently the tangent of the

angle of tangency for the point N are common to both curves,

dy dy'
.

dy dy'=
. These two conditions, y=^y' and =

,

dx dx' dx dx'

existing, the curves are said to have a contact of the first order.

If at the point A^ the second ratal coefficients of the equa-

d^y d^y'
tions of the two curves are also equal (that is, if =

)

there will be a so-called contact of the second order. This is

d^y d^y'
.

evident since either or is the same as the rate of
dx^ dx'^

variation of the tangent of the angle LTN (the angle of

tangency) ; consequently both curves depart from the tangent

line TNG at the same rate.

If, in addition, the third ratal coefficients of the equations

d^y d^
of the curves are equal (that is, if ) the curves will

dx^ dx'^

have a contact of the third order, and so on for any order of

of contact.

Now if BNC be given in species, magnitude, and position.
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and DNE in species only, then the constants which enter

y= f {x) will be fixed and determinate, while those which
enter y' ^f' (^') will be entirely arbitrary, and therefore their

values may be made to answer as many independent condi-

tions as there are constants. Hence for a contact of the first

order, y=^f (^x) must contain at least two constants; for a

contact of the second order, three constants; for a contact of

the third order, four constants, and so on.

In the most general equation of the straight line, which is

y^ax -\-h,

there are two constants, a and h\ therefore the straight line

can have only a contact of the first order.

The most general equation of the circle is

which contains three constants, a, 6, and R ; therefore the

circle can have a contact of the second order.

In the general equation of the parabola,

{ (3;— b) cos V— {x— a) sin vY=
^P {(y— ^) sin V -{- (x— a) cos v},

there are four constants, o, b, v, and p ; therefore the parabola

can have a contact of the third order.

In the general equation of the ellipse or hyperbola there

are five constants; therefore either the ellipse or hyperbola
can have a contact of the fourth order.

The curve which has a higher order of contact with a given
curve than can be found for any other curve of the same
species is called the osculatrix of that species.

52. The general equation of the circle is

(y— by= R'-^(x— ay. (1)

Passing to the rate twice, under the supposition that neither

X nor y varies uniformly—that is, that neither dx nor dy is

constant—then

(3'— ^) dy=— (^— cl) dx

and (y— b) d^y + dy^=—(x— a) d^x— dx^.

From these two equations the following are found

:

{dx^ + dy^) dx
y— b=

dxd^y— dyd^x
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{dx^ + dy^) dy
and . X— a^ .

dxd^y— dyd~x

Substituting these values of 3'— b and x— a in ( 1 ) will

give

{dx^ -^ dy^y dx'-
^

(dx^ -^ dy^y dy^

{dxd^y— dyd^xY {dxd^y— dyd^xY

(dx^ + dy^)- dx^ {dx^ + dy^y dy""

R'~=— — +
{dxd^y

therefore R

(dxd^y— dyd^x-y {dxd^y— dyd^x)

(dx^-\-dy^y

( dxd^y— dyd^x )
^

(dx^ -\- dy^y/^
or R=±-^ —-^-^

, (2)
(dxd^y— dyd^x)

which is the general expression for the value of the radius of

the osculatory circle.

li dxh^ constant,' d^x= and (2) becomes

{dx^ + dy^y^
R= ±-

, (3)
dxd^y

which is the expression for the value of the radius of the

osculatory circle applied to curves referred to rectangular

coordinates in which the abscissa is supposed to vary uni-

formly.

Hence, in order to find the radius of curvature for any
particular curve, the first and second rates of its equation

must be taken and the values of dx, dy, d^y obtained and substi-

tuted in (3).

If z represents the arc, then {dx'^ -\- dy^y^= d2] substi-

tuted in (3), this gives

dz^

R=± . (4)
dxd^y

d^y
It has been shown in Art. 37 that 3; and , consequently

dx^

y and d^y, have contrary signs when the curve is concave

toward the axis of abscissas and like signs when convex;

therefore, if we wish the radius of curvature and the ordinate

of the curve to have like signs, we must employ the minus
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sign m (2), (3), and (4) when the curve is concave toward
the axis of abscissas and the plus sign when convex.

If P and P' be any two points in the given curve APP^B,
r the radius of the

osculatory circle of

the point P, and r' the

B radius of the point

-P' (see figure) then

curvature at P : curv-

1 1

ature at P':: — :—

:

r r'

that is, the curvature

at different points of

a curve varies in-

versely as the radii of

the osculatory circles.

The general equation of lines of the second order is

y"^= ax"^ -\-hx -\- c ( 1

)

{2ax + &) dx

Fig. ^0

53.

and its rate

therefore

dx"^ + dy'^= dx''

2y

(2ax + bydx^

(2)

[43,2 _^ (2ax + by] dx'

or (dx^ + dy^) 3/2

4y2 4y2

[4^4- (2ax + by y/^ dx^

Sy^
(3)

The rate of (2) is

2aydx^— (2ax -\- b) dxdy
d^y

Zy

whence, since dxdy =

ing it and reducing,

d^v=

(2ax -{- b) dx^

[4ay'

2y

.(2ax+by] dx

[see (2)], by substitut-

4yS

but [see (1)]

4ay^= 4aV + 4abx + 4ac= (2ax + by -Jf- 4ac^ b^

or 4ay2— (^2ax -\-b)^= 4ac— b""
;

(4)
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therefore, substituting this in (4) and multiplying by dx,

(4ac— b^)dx^
dxd^y= —

. (5)

Substituting (3) and (5) in (3) of Art. 52, then

[4y2_f (2ax-\-byy/^
R= ±: ,

2 (^4ac— b^)

or, substituting for y its value,

[4 (ax^ + bx-\-c) + {2ax + byr/^
R= ±: , (6)

2{4ac— b')

which is the general expression for the radius of curvature of

lines of the second order for any abscissa x.

If both numerator and denominator of (6) be divided by

8, then
1

{ax^ -{-bx + c + — {2ax + byy/^

R= ± ~
. (7)

ac—— b^
4

The numerator of this value of R is the cube of the normal

[see (6), Art. 40] ; therefore, since the denominator is con-

stant, it is evident from Art. 52 that the radii of curvature at

different points of lines of the second order are to each other as

the cubes of the corresponding normals.

If the origin of coordinates is at the vertex of the trans-

verse axis, c= 0; consequently, using the minus sign, (6)
becomes

{4 (ax^ + bx) -f (2ax -f byy^^
R= ,

2b^

which, when x= 0, reduces to

1

R= -b.
2

In this case b is the parameter of the curve ; therefore the

radius of curvature at the vertex of the transverse axis of lines

of the second order is equal to half the parameter of the curve.

In the case of the parabola whose equation is

3,2= 2px,
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a= 0, c^O, b= 2p; therefore, substituting these values in

(7) and using the minus sign,

K= ,

which is the general value of the radius of curvature for any

point of the parabola. If x= 0, then R= p, the radius of

curvature at the vertex of the axis.

In the case of the ellipse whose equation is

y^= B^— x\
A"

B^
a=— , b= 0, and c= B^; therefore, substituting these

values in (6), reducing and using the minus sign.

R
A'B

which is the general value of the radius of curvature for any

A^
point of the ellipse. If x= 0, then R= , which is the

radius of curvature at the vertex of the minor axis. li x= A,

B^
then R= , which is the radius of curvature at the vertex

A
of the major axis.

Taking the equation of the logarithmic curve,

x= logy,

and passing to the rate twice,

dy ydx
dx^M or dy=

3; M
dxdy

and d^y=
,M

dy^
whence (dx^ + dy^y/^= -^^ (M^ + y^y^'.

Substituting the values of dxd'-^y and (dx^ -\- dy-)^^^ in
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(3) of Art. 52 and using the plus sign, for any point of the

logarithmic curve

R= .

My
When 3; is equal to the modulus of the system of logarithms

employed,

R= 2M V2.

From the ratal equation of the cycloid (Art. 42)

dx= -^
. (1)

{2ry— y^Y""

Passing to the rate and reducing,

ydy"^ (r— 3;)

0=(yd^y-\-dy') {2ry—y^y^-
{2ry— y^y-

{2ry— 3;^) yd-y + rydy''
;

whence
rdy"^ rydy^

d^y^— or dxd^y^=
2ry— y"^

( 2r3;— y^ )
^/^

It will also be found that

y^dy^
dx^ + dy^= + dy^=

2ry— y^

y^dy^ -\- 2rydy^— y^dy^ 2rydy^

therefore

2ry— y^ 2ry— y^

2rydy^ \/{2ry')
{dx^ + dy^y^

(2ry— y2)3/2

Substituting the values of dxd^y and {dx^ + dy^Y'^ in (3)
of Art. 52 and using the minus sign will give

R= 2yJ{2ry);

but the normal is equal to \/ {2ry) by Art. 43 ; hence the radius

of curvature for any point of the cycloid is equal to twice the

normal at the point of contact.

EVOLUTES AND INVOLUTES

54. An evolute is a curve from which a thread is supposed

to be unwound or evolved, its extremity describing another

curve called an involute.
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Thus, let a thread be wrapped about the curve BCC'D (Fig.

21 ) ; then, if the thread be kept tight and unwound from

p BCC^D, its extremity, com-
mencing at A, will describe

the curve APP'S. The curve

BCC^D is called the evolute

of the curve APP'S and
APP'S the involute of

BCC'D.
From the manner in which

the involute is generated it is

evident that any portion of

the thread, as CP, which is

disengaged from the evolute

is a tangent to it at C and per-

pendicular to the involute at

P; also, that any point in the

evolute, as C, may be consid-

ered as a center, and the line

CP as the radius of a circle of whose circumference that por-

tion of the involute curve at P is an arc.

The points B, C, C are therefore centers, and the lines BA,
CP, CP' the radii of circles of curvature of the points A, F,

P' of the involute; hence any radius of curvature, as CP, is

equal to AB plus the arc BC of the evolute.

The value of AB will depend upon the position of the

point B, from which the arc of the evolute is estimated; but

since AB is the radius of curvature of the involute 2X A/\i A
is the origin of the involute and B the corresponding origin

of the evolute, B will be the center of the osculatory circle to

the involute at its origin. Therefore, if the radius of curva-

ture at the origin of the involute is equal to zero, A and B will

coincide, and consequently AB will be equal to zero. If the

involute is a curve of the second order, the radius of curvature

at the vertex of the transverse axis is equal to half its para-

meter, ^^, by Art. 53; consequently AB will be equal to Yih,

and B, the origin of the evolute, will be in the axis of abscissas

AX.
Hence, since the center of any circle of curvature of the

curve APP'S is in the curve BCC'D, it follows that the equa-

tion representing the coordinates of the center of any circle of

curvature of the involute will be the equation of the evolute.



64 AN ELEMENTARY TREATISE

Now the general equation of the circle, consequently of any

circle of curvature, is

(y— by==R'—(x— ay, (1)

in which a and b are the coordinates of its center and x and y
the coordinates of any points of its circumference; therefore

a and b will represent the coordinates of any point, as C, of the

evolute BCC'D, and its equation will be 6==/ (a) ; also x and

y will represent the coordinates of any corresponding point, as

P, of the involute APP^S, and its equation will he y= f (x).

Taking the rate of ( 1 ) twice

(3;— b) dy^— (x— a) dx

and dy^-^ (y— b) d'-y=— dx^;

dx^ + dy'
whence ^= 3' + (2)

d^y

dy dx^ + dy^
and a^x— ( ). (3)

dx d^y

These are expressions for the values of the coordinates of the

evolute in terms of the rates of the coordinates of the involute.

Hence, if we take the rate of the equation of the involute

dy
twice, y= f (x), obtain the values of dx^, dy^, , and d^y,

dx
and then substitute them in (2) and (3), we shall have two new
equations, expressing the values of a and b, the coordinates of

the evolute, in terms of x and y, the coordinates of the involute.

Finally, by combining the equations thus found with the

equation of the involute and eliminating x and y, an equation

will be obtained containing only a and b, which will be the

equation of the evolute.

Taking the equation of the common parabola

y^= 2px,

and passing to the rate twice

ydy= pdx

and dy^ -\- yd^y^ ;

whence
*2 dy p p^

dx"" + dy^={ + 1) dx\ =— and d^y=— dx\
y^ dx y y^
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Substituting these values in (2) and (3) and reducing

give

or h^= , and a= x -\- + p.

f P' P

Substituting 2px for y^ in the last two equations, it is found

that b' (4)

and a= 3x + p or x^—{a— p).

Finally, substituting — (a— p) for;»rin (4), then

(5)

which is the equation of the evolute and shows it to be the

semi-cubical parabola.

If we make 5= 0,

then a= p] hence, the

evolute meets the axis of

abscissas at a distance

AB from the origin

(Fig. 22) equal to half

the parameter of the in-

volute.

If the origin of the

coordinates of the evo-

lute be transferred from
A to B, (5) becomes

b^= .

27p

Since every value of a gives two equal values of b with

contrary signs, the curve is symmetrical with respect to the

axis of abscissas; the evolute BD^ corresponding to the part

AP of the involute and BD to the part AP'.

From the equations relative to the cycloid, Art. 53, it is

found that

2rydy'' dy (2ry— y^)^
dx^ + ">' = >

=
'

2ry— y2 ^_^ y
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and d'y
rd'f-

2ry— y^

Substituting these values in (2) and (3) of Art. 54 will

give

y and a= x -\-2 {2ry— y'^Y^^,

whence y^— &and;ir= a— 2(

—

2rh— ^^)''^.

Substituting these values of x and 3; in the transcendental

equation of the cycloid (Art. 42) gives

a— 2 (—2rb— b^)'^= YQVs-^ (— b) — {—2rb— b^-y\

or a==vers-^ {—b) + (

—

2rb— b^)"^,

which is the transcendental equation of the evolute of the

cycloid, referred to the primitive axes and origin.

From the equation of the radius of curvature for the cy-

cloid, R= 2^{2ry) (see Art. 53), we have R^O when
3^= 0, and when y^2r^BD,R= Ar^^A'B; therefore the

origin of the evolute is at A, and A^D ^BD.
By transferring the origin of the coordinates of the evolute

from A to A' and

Q estimating the ab-

scissas from the

right toward the

left, a new equation

of the evolute is

formed which will

be found to be of

the same form and

to involve the same
constants as the

equation of the cy-

cloid ; hence the

evolute of a cycloid is an equal cycloid—that is, the arc AA^
is a facsimile of the arc AB, and A'C of the arc CB.

Since the origin of the evolute is at A and the radius of

curvature for the vertex B of the cycloid is 4r, the length of

the evolute AA' is 4r; hence the length of the cycloid ABC is

equal to 8f, or four times the diameter of the generating circle.

EXAMPLES

Determine the length of the radius of curvature for a point

in a parabola whose abscissa is four inches and ordinate six

inches.
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Determine the length of the radius of curvature for a point

in an ellipse, whose abscissa is 16 inches, measured from the

center, the semi-axes being 26 and 13 inches.

Determine the equation of the evolute of the equilateral

hyperbola, its equation being y^= x^— A^.

Determine the evolute of the spiral whose ratal equation is

dr

ar

Curves Referred to Polar Coordinates

55. If the right line PC (Fig. 24) revolves uniformly

around the point P, and if at the same time a point moves from
P along the line PC at such a rate that at the first revolution

of PC it will arrive at A, at the second at 5, etc., the curve
described by the point will be a spiral.

The point P about which the right line revolves is called

the pole; the point which moves along the line PC and de-

scribes the curve is called
~ 24 the generating point; a

straight line drawn from
the point P or eye of the

spiral, so called, to any
point of the curve, as A'', is

called the radius vector,

and each portion of the

spiral described by the

generating point, as PDA,
AEB, is called a spire.

With the pole as a

center and PA (the dis-

tance which the generating

point moves from P along PC during the first revolution of

PC) as a radius, if the circle AFG be described, the angular

motion of PC about the pole, consequently the radius vector, as

PN, is measured by an arc of this circle, estimated from A.

Now, if r represents the radius vector and v the measuring

arc estimated from ^, it is evident that r is a function of v and

may generally be represented by the equation,

r= av^, ( 1

)

in which a and n are constants. The value of n depends upon

the law which governs the motion of the generating point along
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the radius vector and the value of a upon the relation existing

between a given value of r and the corresponding value of v.

If n is positive, the spiral represented by (1) commences
at the pole, for when v= 0, r= 0. If w is negative, the equa-

tion becomes

r^av-^; (2)

consequently the spiral commences at an infinite distance from
the pole, for when v= 0, r is infinite, or when r= 0, v is

infinite.

When n is equal to unity, ( 1 ) becomes

r= av. (3)

Now if a= AP, the circumference of the circle AFG will

be 2a TT, which is the measuring arc for the first revolution of

PC ; therefore, since PA or a is then the radius vector,

a= a • 2a TT

1

whence a= .

2'jr

Substituting this value of a in (3) gives

2^'

the equation of the spiral of Archimedes.

When n is equal to one half, (1) becomes

r= av^ or r^= a^v,

which is the equation of the parabolic spiral, being of the same
form as that of the parabola; for substituting 3; for r, \/{2p)
for a, and x for v gives

y^= 2px. (4)

With 2p as radius draw the circle ABC, divide its ^cir-

cumference into any number of equal parts, as six, and draw^

through its center P, the divisional lines Dp', EE' , FF\ With

-i-(2/> + l), ^(2p + 2), ^(2^ + 3), and^(2/> + 4), (1,

2, 3, and 4 being values given x as in the construction of the

parabola) as radii, draw the arcs Aa, AbC, Ac, and Ad, having

their centers in the line AG ; then with Pa, Ph, Pc, and Pd, as

radii, draw the arcs aa' , hh' , cc', and dd', and the curve drawn
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from P through a', 6', c', d^ will be the required spiral. In

proof, it will be seen that AP : PC is equal to Pb^ or Pb^^ (see

Euclid, proposition 35, Book III) ; hence, since AP= 2p and

PC= x, li y be represented by Pb= Pb\ then

y= 2px.

Also, when x=^0, y^=0] therefore the spiral commences at

P, its pole.

When n is equal to — 1, (1) becomes

a
r= av-^ or r=—

.

(5)

The curve represented by this equation is called the hyper-

bolic spiral on account of its analogy to that of the hyperbola

when referred to its center and asymptote.

With a as a radius draw the circle ABC and divide its cir-

C J cumference, 2a tt, into any
number of equal parts, as

six; then giving to v the

5a IT 4a TT

values 2a TT, , ,

3 3

a-TT, etc., the corresponding
1

values of r will be ,

2ir
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3 3 1—— , , —, etc. Let Pa, Pb, Pc, Pd, etc. represent these
D TT 4 TT TT

values of r; then the curve drawn through a, h, c, d, etc., will

be the hyperbolic spiral.

Take any point in the spiral, as G, and draw GH perpen-

dicular to PL] then PG= r and the angle GPH= v; hence

GH= r sin V,

or substituting for r its value from (5)

asinv
GH= . (6)

V

Now it is evident that the smaller the value of v, the nearer

will V and sin v approach equality and consequently the nearer

will GH become equal to a ; therefore, if CJ be drawn parallel

to PL, CJ must be an asymptote to the spiral.

The equation of the logarithmic spiral, so called, is

a\ogr= v. (7)

This spiral may be constructed as follows. With unity for

radius draw the circle ABC ; then, giving to r the values 1, 2,

3, etc., the corresponding values of v will be 0, a log 2, a log 3.

Fia 27

Set off from A on the circumference of the circle these values

of V, A, Ah, Ac, then to A and through h, c, draw PA, PD,
PE, the values of r, and the curve drawn through A, D, E,

will be the logarithmic spiral.

Since the relation between r and v is entirely arbitrary,

P
r=—_ , (8)

1 + cos V

is the polar equation of the parabola, the pole being at the

focus.
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The polar equation of the ellipse, the pole being at one of

the foci, is

p

I -\- e cos V

The polar equation of the hyperbola, the pole being at one
of the foci, is

P
r= . (10)

I -\- e cos V

In (8), (9), and (10) p represents half the parameter, e

the eccentricity, and v the angle which the radius vector makes
with the axis of X.

Tangents and Normals

56. The subtangent to a spiral is a line drawn from the

pole perpendicular to the radius vector and limited by a tangent
drawn through the extremity of the radius vector; the tangent

is a line extending from the point of tangency to the sub-

tangent; the subnormal is a line drawn from the pole to the

foot of the normal ; the normal is a line drawn perpendicular

to the tangent and extending from the point of tangency to the

subtangent extended.

Let r be any radius vector, as PN (see Fig. 28), ^' the

measuring arc estimated from A, and js the corresponding arc

of a spiral of which BNC is a section. Then, if ds be repre-

sented by NM, a tangent to BNC at N, and PN be extended

to N, so that the angle NN'M will be a right angle, it is evident

that NN' will represent dr, the rate at which the radius vector

PN is increasing. Now, draw NM' parallel to N'M and MM'
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parallel to NN' ; also, with P as a center and PN as a radius,

describe the circular arc A'NS. Then it will be seen that NM\
tangent to A'NS at iV, will represent the rate at which the arc

A'N is increasing at A^. Hence, since NM' represents the rate

at which the arc A'N is increasing, it is obvious that RR'

y

tangent to the measuring circle at R, represents dv, the rate at

which V, the measuring arc estimated from A, is increasing to

correspond with NM or dz.

Therefore, since the triangles PRR' and PNM' are similar,

PR:RR'::PN:NM',
or, making the radius of the measuring circle unity,

l:dv::r: NM',
whence NM'= rdv. ( 1

)

Again, from the similar triangles MM'N and NPT,
MM' : NM' ::NP: PT, or, since NP= r, MM'= NN'= dr,

and from ( 1 ) , NM'= rdv,

dr : rdv ::r: PT,

r^dv
whence PT= ; (2)

dr
but PT is the subtangent of the spiral, hence

:

The length of the subtangent to any point of a spiral is

equal to the square of the radius vector into the rate of the

measuring arc, divided by the rate of the radius vector.

For the tangent TN,

TN^ =PN^ + PT^—
. r^dv^

that is, TN^= r^-{-
dr'

or TN=— (dr^ + r^dv^y^. (3)
dr

Hence the length of the tangent to any point of a spiral is

equal to the square root of the sum of the squares of the radius

vector and subtangent.

For the subnormal PQ,
PT:PN::PN:FQ—
r^dv

that is, :r::r:PQ
dr

dr
or PQ=-T-' (4)

dv
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Hence the length of the subnormal to any point of a spiral is

equal to the rate of the radius vector divided by the rate of the

measuring arc.

For the normal QN,

QN'=:PN'+PQ'-

t is, QN'
dr^

1-2 _]_

dv'

QN =
dr'

or QN=ir' + -—)\ (5)
dv'

Hence the iength of the normal to any point of a spiral is

equal to the square root of the sum of the squares of the radius

vector and subnormal.

The tangent of the angle of tangency of a spiral, PTN,

r'dv
since PN= r and PT= from (2), is

dr

PN dr=
. (6)PT rdv ^

^

Hence the tangent of the angle of tangency of a spiral is

equal to the rate of the radius vector divided by the radius

vector into the rate of the m^easuring arc.

PT
The tangent of the angle PNT is equal to ; but, since

r'dv
PAT= r and PT= ,

dr

PT rdv

which is the tangent of the angle the tangent line makes with

the radius vector.

Of the general equation of spirals,

r= aV,

dr dv 1

the rate is =zanv^-'^ or =
.

dv dr anv^^~^
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dr dv
Substituting the value of or , also aV" for r, in

dv dr

formulas (2), (3), (4), (5), (6), and (7), the result will be

PT
n

PQ= anV"-^

QN= (a^Z/^n _|_ a2^2^2n-2)%^ ^^n-i (^2 J^y^y,

n^ n

PN anv^'

PT av V

PT

PN
= V

n
V

In the equation of the spiral of Archimedes, r= , w= 1,

2 TT

1

and a= . By substituting these values in the preceding
2 TT

formulas, the following are obtained

:

v^ V 1

PT= , TN= (1 +^'')^ PQ= ,

2 TT 2 TT 2 TT

1 PN \ PT

27: ^ PT V PN
If ^r= 27r—that is, if the tangent is drawn at the extremity

of the arc generated in the first revolution of the radius

vector—then

pr= 2,r—

that is, PT is equal to the circumference of the measuring
circle.

At the completion of m revolutions v= 2m^ tt, and conse-

quently PT= 2m^ TT= m • 2m ir
—

that is, at the completion of m revolutions the subtangent is

equal to m times the circumference of the circle described with

the radius vector of the mth revolution.

In the equation of the hyperbolic spiral, r= av, n=— 1 ;

therefore PT=— a.
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Hence the subtangent of the hyperbolic spiral is constant.

From the equation of the logarithmic spiral,

V= log r,

rdv
M;it will be found that

dr

but
rdv

~d7
[see (7)] represents the tangent of the angle made

with the radius vector by a tangent line to the curve. Hence
the tangent of the angle which the tangent line makes with the

radius vector is constant and equal to the modulus of the

system of logarithms employed. In the Naperian system the

modulus is unity; therefore, if v is the Naperian logarithm of r,

the angle which the tangent line makes with the radius vector

w45°.

Rate of the Arc and Area of Spirals

57. Let BNC in Fig. 29 be a section of a spiral, P the

pole and TN a tangent to the curve at N. Draw PN, and NM^
at right angles to PN -, also extend TN to M and draw MM'
so that NM'M will be a right angle ; then

NM''= M'M^ + M'N\
But since NM repre-

sents dz] M'M, dr; and
M'N, rdv [see (1) of

Art. 51],

d2'^=dr^-\- r^dv^ or dz=
(dr" J^ r^dv^)\ (1)

Hence the rate of an
arc of a spiral is equal
to the square root of the

sum of the squares of the rate of the radius vector and of the
product of the radius vector and the rate of the measu/ring arc.

Let PN be a radius vector of the spiral PBNC in Fig 30.
Draw NM' and M'P, making the angle PNM' a right angle.
Then, representing the area by A,

dA=-PN'NM\
2

or, since PN= r and, by (1) of Art. 51, NM'

dA=— r^dv.
2

rdv.

(2)
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This is evident from what has been shown in Art. 51 ; for,

since NM^ represents the rate at which the arc AN is increas-

ing at N, it must also represent the rate at which the extremity

of the radius vector is revolving when it arrives at N. Conse-

quently the area of the triangle PNM^ represents the rate at

which the area of the spiral is increasing when the radius

vector is PN.

Hence the rate of the area of a spiral is equal to one-half

the square of the radius vector into the rate of the measuring

arc.

EXAMPLES

Determine the rate of an arc of the parabolic spiral.

Determine the rate of the area of the hyperbolic spiral.

If the rate of the measuring circle of the Naperian log-

arithmic spiral is three, at what rate is the area of the spiral

increasing when the radius vector is four?

Radius of Curvature for Spirals

58. Of the spiral PNS in Fig. 31, the subtangent

r^dv
PT= (see (2) of Art. 56), the tangent

dr

NT= -^(dr^ + r^dv'y^ [see (3) of Art. 56], the radius
dr

vector NP= r, and CN= R, the radius of the osculatory

circle AMN, NQ being normal to the spiral.

Join CP and draw DP parallel and BP perpendicular to

NQ ; then, since BN= DP,

CP^= CN^ + NP^— 2CN • DP
or CP^= R^ -^ r^— 2R ' DP

;

but DP =^ r sin PND, or, since sin PND is also equal to
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PT rdv

NT {dr^ -^ r'dv^y^
, DP= r^dv

2Rr^dv

therefore

(1)

Now the equation of the spiral is r= az/", whence

V= ; hence dv= .

Substituting this value of ofz^ in (1), then

(^2/n_|_^2^2/n)%
(2)
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Passing to the rate, CP and R being constant for any point

of the circle AMP, and reducing,

R= ^
, (3)

which is the general value of the radius of curvature for all

spirals represented by the equation r^az^, in terms of the

radius vector.

In the case of the spiral of Archimedes, n=\, and (3)

(;.2_|_ ^2)3/2

becomes R= .

For the logarithmic spiral, whose equation is log r==v,

_ Mdr

r

therefore, substituting this value of Jz^ in (2), it will be found

2RMr
that CP2= i^2_^^2

Passing to the rate and reducing,

R= .

M
If the Naperian system be used, M=l, and R= r\/2.

Determine the radius of curvature for a parabolic spiral;

also for the hyperbolic spiral.

Singular Points of Curves

59. It has been shown in Art. 36 that the first ratal co-

efficient of the equation of a curve represents the tangent of

the angle of tangency; therefore, since the tangent of this

angle is zero when the angle is zero, and infinite when the

angle is 90°, it follows that the roots of the equation

dy

dx

will give the abscissas of all points of the curve at which the
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tangent line is parallel to the axis of abscissas; also that the

roots of the equation

dy

dx
00

will give the abscissas of all points of the curve at which the

tangent line is perpendicular to the axis of abscissas (see Fig.

32 and Fig. 33).

Taking the equation of the

circle

and passing to the rate,

dy X
-^=q=

. (1)

If (1) =0, x= 0, but when
x=^0, y^±R; therefore the

circle has two tangents parallel

to the axis of abscissas, (see Fig.

32). If (1) is infinite, ;»r= ± i?

and 3^= 0; therefore the circle

has two tangents perpendicular

to its axis of abscissas (see Fig.

33).

Of the equation of the Y
parabola,

y=±^(2px),
the rate is

dy p-^=±
. (2)

dx \/{2px)

If (2)==0, both X and y
are infinite; therefore the

parabola has no tangent

parallel to its axis of ab-

scissas. If (2) is infinite, both x and y are equal to zero;

therefore the parabola has a tangent (the axis of ordinates),

perpendicular to its axis of abscissas at the origin of its

coordinates, as shown in Fig. 34.

Points of Inflection

60. Those points of a curve at which the curve changes its

direction—that is, from being concave to its axis of abscissas it
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becomes convex, or vice versa—are called points of inflection.

At such a point the angle of tangency and consequently

its tangent must either change from increasing to decreasing,

or from decreasing to increasing; therefore the rate of varia-

tion of the tangent of the angle of tangency at a point of

inflection will be zero, real, or infinite; zero when the angle of

tangency is zero, real between 0° and 90°, and infinite when

90°. Hence since represents the rate of variation of the

tangent of the angle of tangency, every point of inflection will

have for its abscissa some root of the equations

:

d^y d^y d^y-= (!),-> 0(2). and -=00(3).

But it does not follow that every root of these equations will be

the abscissa of a point of inflection; hence it is necessary to

d^y
examine whether the value of x will give contrary signs

dx^

(see Art. 37).

Let the equation of the curve be

y=^a-\-b {x— cy. (4)

Then passing to the rate twice,

dy
-J-= 3b(x-cy (5)
ax

d^y
and = 6b (x— c). (6)

dx^

Making (6) equal to zero, then

x= c,

but when x= c, the first ratal coefficient is equal to zero also

;

therefore y= a when x= c, there is a tangent line to the

curve at the point whose coordinates are a and c, which is

parallel to the axis of abscissas.
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35

If h is positive, the second ratal coefficient will be zero for
= Cy but negative when x <:^c and positive when x y, c,

therefore there is an inflection

of the curve at the point whose
abscissa is x^c (see Fig. 35).

If 6 is negative, the second

ratal coefficient will be positive

when X <^c and negative when
jr > c ; therefore, at the point of

the curve whose abscissa is

x= c, there is an inflection of

the curve, but opposite to the

first (see Fig. 36).

In the first case the curve is

first concave, then convex to the

axis of X; in the second case it

is first convex, then concave, as

A X shown in the figures.

Let the equation of the curve be

Then, passing to the rate twice.

s36

dy 3b

dx 5 {x— cy^

Making x= c, both expres-

sions become infinite; therefore

the first ratal coefficient, since

y= a when x= c, gives a tan-

gent line to the curve at the point

whose coordinates are a and c,

which is perpendicular to the

axis of X.
If h is positive, the second

ratal coefficient will be positive

for all values oi x <C c, and nega-

tive for all values of x ^ c;

hence, for all values of x less

than c, which makes y positive,

the curve will be convex to the

axis of X, while for all values of

d^y
and = 6b

dx' 25 {x— c) 7/5

g. 57

v38

XA P
X greater than c, it will be concave (see Fig. 37).

If 6 is negative, the case will be the reverse, as shown in

Fig. 38.
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If a= 0, P will be the point of inflection, and if a= 0,

also c= 0, A will be the point of inflection.

Cusp Points
61. The point at which two branches of a curve terminate

and have a common tangent is called a cusp point. When the

cusp is formed by the union of two branches, one on either

side of the tangent, it is called a cusp of the first order,

and when both branches are on the same side of the tangent,

it is called a cusp of the second order.

If x= c be the abscissa of a cusp point, the values of x
immediately preceding and following that of x^=c, when
substituted in the given equation, will give to y either two real

or two imaginary values; if real, both will be greater or both
less than that of the cusp point ; furthermore, for a cusp point
there will be a distinguishable term in the second ratal co-
efficient, either equal to zero or infinity.

Let the equation of the curve be

yz=ax± b {x— c ) ^/2
;

then, taking the rate twice gives

dy 5 d'^y \S= a ± — b (x— c)'^^^ and = h b (x— c)'^\
dx 2 '

'

dx'' A ^
^

Making the second ratal coefficient equal to zero, we have
x= c] hence, since for a value of x less than c, y will have two
imaginary values, and for a value of x greater than c, y will

have two real values, there is a cusp at the point of the curve
whose abscissa \s x= c (see Fig. 39).

When x=^c, the first ratal coefficient equals a ; hence the

tangent of the angle of tangency at the cusp point is equal to a,

and since y= ac when x= c,

the tangent line to the curve at

the cusp passes through the

origin of coordinates. Also for

any value of x greater than c,

d^y
will have two values, one

dx""

positive and the other negative

;

consequently one branch of the

curve is convex and the other

concave to the axis of X; there-

y^ fore a branch must lie on either

side of the tangent line AN and
the cusp is of the first order.

FiO. 39
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The equation of the semi-cubical parabola is

3^= it ax^^^,

the rates of which are

dy 3 d^y 3a= ±: — ax"^ and = ±: .

dx 2 dx\ \x^^

Making =oo, x= 0\ then y has two imaginary values
dx^

for AT <^ and two real values for ^ > ; and, since y=
when x= 0, there is a cusp at the origin of the coordinates;

dy
but when x= 0, = 0, hence the axis of abscissas is a tan-

dx
gent to both branches of the curve at the cusp (see Fig. 40).

Examination of the primitive equation shows that for every

value of X greater than 0, y has two values, one positive and

the other negative; therefore one

branch of the curve, AC, lies above,

and the other, AC, below the axis of

X, and the cusp is of the first order.

d^y
V For any value of x'^0, has two

O/X

F i a 40 values, one positive and the other neg-
^ ative ; consequently, since y is negative

for the branch AC, both branches are

C convex to the axis of X.

Of the equation

y= a^b {x— cy^
the rates are

dy 2b

and

dx 3(.r— c)i/«

d^y 2b

dx^ 9{x— cy'^

Making the second ratal coefficient equal infinity. x=c\
hence, since y == a when x^=c, and since y is greater than a

either for x <:^c ov x"^ c, there is a cusp at the point of the

curve whose coordinates are x= c, y^a.
When the first ratal coefficient is equal to infinity, x= c)

hence a tangent line to the curve at the cusp point is perpen-

dicular to the axis of abscissas (see Fig. 41).
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Of the equation

the rates are

and

For any value of x, either

less or greater than c, the value

of is negative ; consequently

both branches of the curve are

concave to the axis of abscissas

;

also, since y has a value corre-

sponding to either ^ <^ c or
^ > c, a branch lies on either

side of the tangent line TG.

d^y
If h is negative, then be-

dx^

comes positive for any value of

X, either less or greater than c;

therefore both branches of the

curve are convex to the axis of

abscissas (see Fig. 42).

y= 2x^ ±— X^'\

dy

dx

d^y

4x ± 2x^/^

dx'
= A±Zx'/K

Making the first ratal coefficient equal to zero, then x=
A . . r.

32 288
or 4 ; but when ;ir= 0, 3;= 0, and when x^A, y=^— or

;

therefore the axis of abscissas is tangent to the curve at A,

the origin. There is another

tangent to the curve at E,

parallel to the axis of X, and

corresponding to an abscissa

32
of 4 and an ordinate of .

5

If the positive sign be

X d^y
_ . 7 used (since will then be
g ^^ ^

dx^
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positive for any value of ;ir), the left hand branch of the curve,

AB, is convex to the axis of abscissas. But if the negative

sign be used which corresponds with the right hand branch of

the curve AEC, since will then be positive for x <^

and negative for x"^ , the part AD, answering to ;r= to
16

. negative for x'^ •

16
, will be convex and the part DEC concave; consequently

there is an inflection at D.

In conclusion, since y has two imaginary values for x ^0,
and two real values for x ^0, and since y= when ;ir= 0,

the branches AB and AEC form a cusp of the second order at

A, their origin.

Multiple Points

62. The points at which two or more branches of a curve

intersect are called a multiple point.

At a multiple point it is therefore evident that there must

be as many tangents to the curve as there are intersecting

dy
branches ; hence , which represents the tangent of the angle

dx
of tangency, will have as many values as there are different

tangents.

Let the equation of the curve be

y= a±x{b^— x^)'^; (1)

then, passing to the rate,

dy b^— 2x^-^=± . (2)
dx (b^— x^y^

An inspection of ( 1 ) shows that values of x greater than b

make y imaginary, while for values of x less than b, y has two

values; hence the curve has two branches which, since y= o
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when x= 0, intersect the axis of ordinates at a distance a from

A, the origin (see Fig. 44).

dy
When x=^b or — b, becomes infinite, consequently the

dx

tangents to the curve at B and B' are perpendicular to the axis

dy
of abscissas. When x^O.

dx
± b: therefore there are

two tangents, TN and T'N', to the curve passing through the

multiple point.

Let the equation of the curve be

then, passing to the rate,

dy 1 =p 3 V ^

dx 4(V-^±:^)^

(3)

(4)

From an examination of (3) we find for x <^0 that y is

imaginary ; for ;r= 0, 3*= or 2 ; for any value between and

1, that y has four real values; for x^l, y=l; and for any

value of X greater than 1, that y has only two real values.
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Hence two branches of the curve must intersect each other at

the point whose coordinates are x^l and y^l (see Fig. 45).

dy 1 1

When x=l, is infinite, -\- — \/2, or —— V^, conse-
dx 2 2

quently the curve has a multiple point corresponding to the

coordinates x=l, y=l, and at this point there are three

Y

tangent lines, TG, T^G\ T^'G^': TG is perpendicular to the

axis of abscissas, and T^G' and r"G" make angles therewith,

1 1

whose respective tangents are + — \/2 and —— \/2.

Isolated Points

63. A point which is entirely detached from a curve, but

whose coordinates satisfy the equation, is called an isolated or

conjugate point.

Since a point entirely detached from a curve can have no
tangent, it is evident that for an isolated point, the first ratal

coefficient of the equation will be imaginary.

Let the equation be

y=±{x + a)^/x', (1)

then, passing to the rate,

dy 3^ + a= ih . (2)
dx 2 \/x
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By examining (1) we find that x= makes 3'==0, and
for any value of x y 0, y has two
real values, one positive and the other

negative; therefore the curve passes

through the origin A and has two
branches, AC, AC\ extending to the

right (see Fig. 46).

Equation (1) is also satisfied by
the coordinates x=— a and 3^= 0;

dy
but when x=^— a, becomes im-

dx

aginary; hence, the point P, whose
abscissa is x^^— a, being entirely

detached from the curve, is an iso-

lated point.

The rate of (2) is

d^y 3 X— a

dx' Ax\/x
1

Making this equal to zero gives x=^— a ; therefore there is

1

an inflection of the curve at the point whose abscissa is jr=— a.

Maxima and Minima

64. If a variable quantity increases until it attains a value
greater than any immediately preceding or following it, such
a value is called a maximum ; and if it decreases until it attains

a value less than any imme-
diately preceding or following

it, such a value is called a

minimum.
Illustration. Let the points

F and P' be so situated in the

curve BPP'C (see Fig. 47)
that tangent lines, TN and
T'N', to the curve at P and
P' , shall be parallel to the axis

since it is obvious that the ordinate

r T p N

C/ Vf
T' N'

A.B Xr v
Fig. 47

of abscissas, AX\ then,

FP is greater than any immediately preceding or following it,

and that the ordinate F'P' is less than any immediately pre-

ceding or following it, FP is a maximum and F'P' a minimum.
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Therefore, \i y= f {x) is the equation of the curve, x repre-

senting any abscissa and y the corresponding ordinate, 3; is a

maximum when it is equal to F'P'.

Now, for that point of a curve at which a tangent line is

parallel to the axis of abscissas, since it then makes no angle

with this axis, and since the first ratal coefficient of its equa-

tion represents the tangent of the angle of tangency (see Art.

36),
dy

dx

Hence when a function is either a maximum or a minimum
the first ratal coefficient is equal to zero. For instance, if the

function is of the form

y= x^— 2ax -\- b,

the rate is

dy
^2x— 2a;

dx

therefore 3; is either a maximum or a minimum when

2x— 2a= or when x= a.

It will be observed that the curve BPP'C is concave to its

axis of abscissas at the point -P, and convex at the point P';

therefore, from Art. 37, since either ordinate FP or F'P' is

positive, the second ratal coefficient of the equation of the

curve will be negative for the ordinate FP and positive for the

ordinate F'P'. But it has been shown that FP is a maximum
ordinate, and P'P' a minimum ordinate; consequently, if the

d^y
equation of the curve is y= / {x), will be negative when

dx"^

3; is a maximum and positive when 3/ is a minimum.

Hence, to find the values of the variable of a function which
will render the function a maximum or a minimum, also to

distinguish the one from the other, we have the following rule.

Make the first ratal coefficient of the function equal to

zero and find the values of the variable in this equation; then

substitute these values in the second ratal coefficient of the

function^ and each value which gives a negative result will

render the function a maximum., and each value which gives

a positive result will render it a minimum.
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It sometimes happens that a value of the variable, as ;r= a,

found by making the first ratal coefficient of the function equal

to zero, will reduce the second ratal coefficient to zero also. In

this case, substitute a ±: v for x in , and if either + ?y or

— V give a negative result for a small value of v, y will be a

maximum; but if the result is positive, y will be a minimum.

If one sign gives a negative result and the other a positive

result, it is clear y will be neither a maximum nor a minimum

;

such a result simply indicates that the curve represented by the

proposed equation, has an inflection at the point corresponding

to the abscissa x= a (see Art. 60).

For illustration, take the equation

y= x*— 4x^-}- 16;r + 13

;

then, passing to the rate twice,

^= 4;r^_12;ir2 + 16, (1)
dx

d^y
and -^=\2x^— 2Ax. (2)

dx^

If (1)=0, then x=—\ or .^-= 2.

Substituting these values of .^r in (2), then for x=— 1,

d'^y d^y= 36 and for x^2, = 0.

dx^ dx

Since x= 2 reduces the second ratal coefficient to zero, by

substituting 2±v for x in (2) the result is 12^'(^/±:2),

which, for a small value of v, is negative for the minus sign

and positive for the plus sign, which shows that there is an

inflection of the curve at r\ corresponding to the abscissa

x^2; hence this value of x makes y neither a maximum nor

a minimum (see Fig. 48). There is also an inflection at r, but

a minimum for y answering to ;r^— 1.
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Y

V\g. 48
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-z

Let the equation be

1

-(3;r2— 12)
dy 2

then = = 0, whence x=±2.
dx (x'—l2xy^

Taking the rate of (3) and reducing, regarding

3x^— 12= 0, the result is

d^y 3x

dx^
~

(x'— Ux)"^'

3
which, for x=—2, equals ——, and for x= 2, equals

3——V— 1
f
therefore 3; is a maximum when x=— 2 and a

minimum when x= -\-2.

If y^^z;^x^ 12;ir,

dv
then

dx
3;ir2— 12;

whence x^ ±2,

the same values of x as before.
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Hence when the expression containing the variable is under
a radical, the radical may be omitted.

65. In case the equation is of the form

f{x,y)=Q, (1)

in which 3; is a function of x, pass to the rate and find from
dy = the value of x in terms of y, also of 3; in terms of x.

dx
Substitute the value of x in terms of y in (1) and therefrom

determine the value of y, and with this value of 3; find that of x.

Next determine the second ratal coefficient and substitute

therein the values of x and 3; found from (1). And if the

result is negative, 3; will be a maximum ; but if positive, a mini-

mum. Should these values reduce the second ratal coefficient

to zero, proceed as in article 64.

EXAMPLE

y^^2axy— x^— b^= 0. (2)

Passing to the rate,

2ydy -\- 2axdy + 2aydx— 2xdx= 0,

dy X— ay
(3)Ul

dx
'

ax-{-y'

whence, by making it equal to zero.

X
x =-ay or 3; =

a

Substituting ay for X in (2), we find

b
y-

{\-\-a-) %
'

therefore X-
ab

(l+a^)^

dy
Taking the rate of (3), regarding = 0, also x—ay= 0,

dx

d'^y ax-\-y 1

then
dx"^ {cbx -\- yY ax -\-

y

or, substituting for x and 3^ their values and reducing,

d'^y 1

dx''
~

b {\ +a2)v.
•
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ah
Hence 3; is a minimum when x

(l+a^)^

dy
The value oi x=^a found from = will sometimes

dx
make the second ratal coefficient infinite. In such a case, sub-

stitute a ±v (v being a small quantity) for x in . Then
dx^

if the result for both signs of v is negative, y will be a maxi-

mum for x^a, and if positive, a minimum ; but if the result

for one sign is negative and for the other sign positive, y will

be neither a maximum nor a minimum.

Let the function be

y= b—(x^ay/K
Passing to the rate twice,

dy

dx
(^— a)^/^ (4)

d^y 4
and for x^a, =— = 00. (5)

dx^ 9(x— ay/^

If (4) =0, x= a; but when x= a, (5) becomes infinite;

therefore, by substituting a zt v for x in (5),

d^y 4

dx^ 9(±v) 2/3

which is negative for either plus or minus v; therefore y is a

maximum when x= a.

66. When the curve represented by a given equation forms a

cusp of the first order, and a tangent line to the curve at the

cusp point makes an angle of ninety degrees with the axis of

abscissas, it is evident, as may be seen in the figures 41 and 42,

that the ordinate of the cusp point will be a maximum or mini-

mum, according as both branches of the curve are concave or

convex to the axis of abscissas ; but when the angle of tangency

is 90°, the first ratal coefficient of the equation is infinite.

Therefore, to find the value of the variable which will render

the function a maximum or a minimum in such a case, a solu-

tion is required of

dy = 00.

dx
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If the value of x thus found renders the second ratal co

efficient infinite, proceed as has been previously explained.

For an example, take

y= a— 9 (x— cy/^;

then, passing to the rate twice,

dy 6

dx (x— c) 1/3
(1)

d^y 2
and = = 00. (2)

dx^ (^_c)4/3

( 1 ) is satisfied when x=c, and by substituting c -\- v in

(2), it becomes
d'y 2_

dx^
~

v^i^
'

therefore 3^ is a minimum when x^c.

EXAMPLES

Determine the values of the variable that will make the

following maxima or minima.

1. y= ;»r4_ 8^^ + llx""— 2\x.

2. y=h—{x— ayi\

3. 3;= 4zb (3;r2— 12.^ + 9)2/3.

4. Divide a quantity, a, into two such parts, that the mth
power of one part multiplied by the ?«th power of the other

part shall be a maximum.

5. Determine the minimum hypotenuse of a right-angled

triangle containing an inscribed rectangle whose sides are as

a to h.

6. Determine the length of the axis of the largest parabola

that can be cut from a right cone, the length of whose side is s.

7. The perpendiculars of two right-angled triangles are

a and h, the sum of their bases c, and the sum of their hypote-

nuses a minimum. What is the base of each?

8. If the solidity of a cylinder is 27r and its surface a mini-

mum, what is its diameter?

9. What is the height of the largest cylinder which can be

inscribed in a cone whose altitude is o?
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10. What is the altitude of a maximum rectangle inscribed

in a triangle whose base is b and perpendicular height a?

11. What is the altitude of the largest cylinder that can be

cut from a paraboloid whose axis is o?

67. It has been shown that the value of a single variable

which will render its function a maximum or a minimum, is

found by making the first ratal coefficient of the function equal

to zero ; hence it is evident that the value of each variable of a

function of two or more variables is also to be found by mak-
ing the first partial ratal coefficient of the function, relative

to that variable, equal to zero: that is, if u= f {x,y), the

value of X which will render the function a maximum or a

minimum, is found from

du

dx
0,

du
and of 3; from ^0,

dy

whence all the values of x and y can be found, which will

render u a maximum or minimum.

It has also been shown that the second ratal coefficient of a

function of a single variable is negative when the function is a
maximum and positive when it is a minimum ; for like reasons,

the values of x and y, found from the first partial rates of

u= f (^,3'), when substituted in the second partial rates, must
give each a negative value when w is a maximum and a posi-

tive value when u is a, minimum.

The second partial rates oi u= f (x,y) are

d^u d^u d^u d^u
and

dx^ dy^ dxdy dydx

or, since the last two expressions are equal (see Art. 21), only

the following need be used, namely

d^u d^u d^u
and

dx^ dy^ dxdy

each of which must be negative when w is a maximum and
positive when w is a minimum.

The process is similar when there are three or more inde-

pendent variables.
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Let u= ax^'f— x'^y'^— ^^3^^,

the partial rates of which are

dx
Sax^y^— 4x^y^— 3x^y^

du
and = 2ax^y— 2x*y— 3x^y^.

dy

Making these equal to zero, it will be found that

1 1

x=— a and y=— a.

2 3

The second partial rates are

d^u

dx'

dH

6axy'— I2x'y'— 6xy^,

- 2ax^— 2x*— 6x^y
dy^

d'u
and = 6ax'y— 8;i;^3;— 9x^y^.

dxdy

Substituting in these the values of x and y, the results are

d'u a* d^'u a* (/% a*
and

dx' 9 dy' 8 dxdy 6

a a
therefore, when x=— and y=—, z^ is a maximum and equal

^ <j

a«
to .

432

EXAMPLES

The volume of a rectangular solid is s. What is the length

of each side when its surface is a minimum?

Let X, y, and represent the lengths of the sides, and u
xy

its surface.

2s 2s
Then u= 2xy -\- + .

X y
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The first partial rates of this are

du 2s du 2s
=^2y— and = 2x

dx " x^ dy y^

whence, by making them equal to zero, it will be found that

^__^i/3 ^nd 3r= ji/^

The second partial rates are

dH As d^u As d^u=
,

= and ^2.
dx^ x^ dy^ y^ dxdy

Since each of these are positive, w is a minimum when each

side is equal to s'^^^.

The semi-diameter of a sphere is r. What are the lengths

of the sides of the greatest rectangular parallelopipedon that

can be cut from it?
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PART TWO

THE INVERSE METHOD

DEFINITIONS AND ILLUSTRATIONS

68. In Part One the function is given to find the rate;

herein the rate of the function is given to find the function.

69. The method of passing from the rate to the function-

that is, the process of restoring the function of which the rate is

given—is called integration, and the restored function is called

the integral of that rate.

The integral of a given ratal expression is indicated by the

character J placed before it, as

f(2axdx + bdx),

showing that the integral is required.

70. There can be only one rate of a given function, but

there may be more than one function answering to a given

rate. This is obvious, since x^ and x^ -\- a have the same rate,

viz., 2xdx. Therefore, in integrating, a constant term must be

added to the integral. This term is usually represented by C;

thus the integral of

du= 2axdx is u= ax -\- C.

C is called an arbitrary constant, and the integral before

the value of C is known is called an incomplete integral. In

the solution of a real problem, however, the value of C may be

determined from the known conditions of the problem and

consequently a complete integral obtained.

For illustration take the ratal equation of the straight line,

dy= adx,

whence y= ax -{- C.

If the straight line passes through the origin of the coordi-

nates, then y= when x^O; hence C= 0, and the complete

or true integral is

y=zax.
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' 'But' ff'th^e' straight line cuts the axis of ordinates at a dis-

tance from the origin equal to b, then for x^=^0, y=b, conse-

quently C= h, and the true integral is

y:=ax -\- h.

71. Of the triangle ABC, let AC be represented by x, BC
by 2ax, CD by dx, and the area of ABC by A ; then

dA = 2axdx,

A = ax^^C.

But when x= 0, A= 0, conse-

quently C= 0; therefore the true

integral is A^=ax^. (1)

It will be observed that the same
is true for the triangle AEF when

that is

whence

D

Fig. 49
X= AF, and A'= the area of AEF

A'= ax^ (2)

Now if ;ir= w in (1) and x^m in (2), representing the

area of EBFC by A'', then

A''= A—A' = an' am^

This process is termed integrating between limits. In the

present case, the integral of 2xdx is taken between the limits

oi x= m and x= n, m being called the inferior limit of x and
n the superior limit. The sign of this method is placed before
the given rate; thus ('' Xdx, X being a function of x. If

m= 0, then the sign becomes
J".

Simple Algebraic Rates

72. According to the rules under Art. 10, if

ax"^^^

u= , du= ax^dx

;

w-fl

therefore, it is seen that the function corresponding to the rate

ax'^dx is, by Art. 70, + C :

n-f 1

that is fax^dx= ax^

Hence the following rule

:

+ 1

+ c.
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The integral of a monomial rate is equal to the constant

factor into the variable with its exponent increased by unity,

divided by the exponent thus increased, plus a constant term.

This rule is applicable whether n is positive or negative, a

whole number or a fraction, except when n=— 1, for then

ajT"^^ axr^-i ax^ a

n+l~l--1~~ ~'o~
But when n=— 1,

ax'^dx -= ax-^dx= adx
>

X

which is the rate of log x, by Art. 27,

therefore
adx

-^ a log ;i; + c.

00

X

Hence the integral of a fractional rate whose numerator is

the rate of the denominator multiplied by a constant, is equal

to the constant into the Naperian logarithm of the denominator,
plus a constant term.

Since a constant quantity retains the same value through-
out the same investigation, it can be placed outside the sign

of integration, as ajx^dx.

7Z. Since the rate of a function composed of the sum or

difference of any number of terms containing the same inde-

pendent variable is the corresponding sum or difference of

their rates taken separately (see Art. 11), it follows that the

integral of a ratal expression composed of the sum or difference

of several terms is equal to the corresponding sum or difference

of their respective integrals ; thus

J {ax^dx-\-bdx—nx^-'^dx)= aJx^dx-]-bJdx— njx^-^dx^=

"1
-ax^ + bx— x^' + C.
3

From this it is evident that a polynomial of the form

du^ (a± bx ±: cx^ ± etc.)^ dx,

in which m is a positive whole number, can be integrated by

raising the quantity within the parenthesis to the nth power,

multiplying through by dx, then integrating each term sepa-

rately.
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Let du= {a-\- hxY dx\

then du= a^dx + Za^hxdx + Zab^x^dx -\- b^x^dx,

whence u^ f (a^dx + Sa^bxdx + 3a&^;ir^c?;ir + b^x^dx) =
3 1

2 4

When the rate is of the form

du= (x^ + ax + &)" (2xdx + adx),

in which n is an integer or fraction, positive or negative, and
when the quantity within the last parenthesis is the rate of that

within the first; then

u=f (x^ -\-ax -^b)"" (2xdx + adx) =
1

(x^ + ax + by^-" + C.
n + 1

This case is substantially the same as that of a monomial
rate (see Art. 72) and is similarly inapplicable under the same
condition : viz., when the exponent w^— 1 , for then

1 1

{x^ + ax + bY'^= {x^ -\-a'X + by-^=
n + 1 1 — 1

^ {x^ + ax-\-by 1

x^ -\- ax -\- b

in which the numerator is the rate of the denominator ; there-

1-1
but when n=— 1,

(x^ -\- ax -\- b)^ (2xdx + adx) =
2xdx + od^

(x^ -\- ax -\- b)~^ (2xdx + adx)

hi

fore

2xdx + adx
u==f (x^ + o^r + b)-^ {2xdx -\- adx)= f

=
x^ -\- ax -\- b

log (x^ + ax + b) + C.

74. To determine the integral of a binomial rate of the

form
du= (a-\- bx"^)^ x^-'^dx :

that is, one in which the exponent of the variable without the

parenthesis is less by unity than that of the variable within.
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Assume a + bx""= y,

and taking the rate nbx"~^dx= dy

dy
or x^'^dx

hence du^y

nb

dy y^^dy

nb nb

^m+x

therefore by Art. 72, u= \- C

;

nb (m -|- 1)

or, substituting for y its value,

(a -{- bx'')"^^"-

C.
nb (m +1)

Hence the integral of a binomial rate in which the ex-

ponent of the variable without the parenthesis is one less than

that within, is equal to the binomial factor with its exponent
increased by unity, divided by the exponent thus increased

into the product of the exponent and coefficient of the variable

within, with a constant term added to the result.

If the rate is

(a + bnx"^-^) dx
du= ,

2 (ax + bx^^y"

1

or du=— (ax -\- bx"")-'^^ (a + bnx''-^)dx,

it will be seen that the quantity within the last parenthesis is

the rate of that within the first ; therefore, by Art. 73,

1

M^J — (ax -{- bx"")-"^ (a + bnx""-^) dx^ (ax + bx^^y.

If the rate is

adx
du=

b ± ex

by making b ±l cx^=y,

± dy
then zt cdx= dy, or dx=

c

d= ady
therefore du= ;

cy
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consequently, by Art. 72,

a
u=±:—logy-]-C,

c

or, substituting for y its value,

a
w=±: — log (&zb ex) + C.

c

EXAMPLES
ax^dx

1. du=
2

2. du= {x^ + axy {2xdx + adx)

3. f/w=: (1 ^ax)-^2xdx.

axdx
4. Jw= —

{x^ + a^)

ndx
5. Jm= (a + hx^)"^ mxdx +

Simple Circular Rates

75. Referring to Art. 31, it will be seen that

u= f cos xdx= sin ;r

dx
u=f ==tan X

cos''^ X
u= f

— sin xdx= cos x
dx

u= C— = cot X
^ sin^ X

w= J sin xdx= vers x
tan xdx

u^ f = sec X, etc.

cos;r

Also in (3) of Art. 31, it is shown that the rate of

sin jjT"^ w cos x"~^dx—
that is. Ifn cos x*^-'^dx= sin x^

;

(1)

hence it is clear that

J— w sin ;r"-^flf;ir= cos AT". (2)

If n= 1, (1) and 2 become
u= smx -\- C and u= cos x -]- C.
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EXAMPLES
1 dx

1. /sin
X x^

2xdx
2. /-

cosMl— ^')

76. It is shown in Art. 33, making R^\ and omitting the

constant C, that

du
1. x=(—, = sin~^w

J (1— W2)%

du
2. AT= r— = cos"^ w

•^ (l_w2)^

3. ;r^J = vers"^ u

4. x= C
^ 1+w

(2w— w2)%

du
tan-^ w

Let dx= , (1)

and assume w= az;;

then du= adv and (a^— u^)'^= a(l— z/^p

Substituting these values in ( 1 ) gives

dv
dx= ;

(1_Z,2)%

dv
hence [see (1)1, x= f = sin"^ t;

or, since = and ^'= —

,

AT^ r = sin"^ —

.

J (a2_M2)% ^

du
Let c?;j;

(2aw— m2)%

and assume u=^av\
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then

du adv dv
du= adv and

(2au— u^y^ a{2v—v'y- {2v—v'y'^

du
therefore [see (3)],;ir=

J*
= vers"^^'=

{2v— v'^)

du u
c ^^ vers"^ —

.

'^ {2au-^u^y^ a

du
Let dx

a^ + u^

and assume u= av; then du= adv

du adv dv
and

a^-\-u^ a2(l+z/2) a{l-\-v^)

therefore

1 dv 1 du 1 u
x^=— f =— tan~^ V= ( =— tan"^ —

,

a -^
1 + z/2 a -^ a^-{-u^ a a

EXAMPLES

du
1. ax—

(c— u^y

•^ j7 i-

du
Z. ax —

'

(4u 2w2)%

'^ /ff— du

S-\-u^

4. dx= du
+

du

(l—u')^ (2u— u^y

Integration by Series

77. Any expression of the form

du == Xdx,

in which X is such a function of x that it can be developed into

a series of the powers of x, may be integrated in the follow-

ing manner. Supposing the development to be

X= Ax'' + Bx^ + Cx<= + etc.,
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then multiplying by dx and integrating each term separately

give ABC
u= (Xdx= x""-"- + x^^^ + x^"-"- + etc.

J a_|_l ^4.1 c-\-l

This method is often the best, if not the only course to

pursue, for when the series are rapidly converging, an approxi-

mate value of the integral may be readily determined.

dx
Let du= .

a -\- X

Then, developing by the binomial theorem,

1 \ X x^ x^
=(a + ^)-i±=—_— + ——— + etc.;

a -\- X a a^ a^ a^

multiplying by dx,

dx dx xdx x^dx x^dx= — + — + etc.,

a -\- X a a^ a^ a*

and integrating, the result is

dx X x^ x^ ;r*

u= f
=(-— + — + etc.) +C.

It has been shown in Art. 72 that

dx
u=f = log (a-]-x) +C;

a-{- X
therefore

X x^ x^ x'^

u= \og (a + x) ^=—— + — + etc.

—

^ ^
^ a 2a^ Za^ 4a*

a result, when a= 1, the same as found in Art. 29.

dx
Let du= = (1 + x^)-^ dx.

1 -\- x^

Developing,

Multiplying by dx and integrating,

x^ x^ x"^

u=f(l+x')dx= x—j + -—y + etc.
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It has been shown in Art. 76 that

dx
f = tan-^ X ;

therefore u= J (1 -}- x^)-^ dx= tan"^ x=
X x^ x^ x''

(7—7 + T—7 + etc.)+C.
1 3 7

When x= 0, the arc, and consequently C, equals ; there-

fore

X x^ x^ x"^

u= tan"^ x=——— -f-
——— + etc.

1 3 5 7
^

dx
Let du= =(l—x^y^ dx.

Developing and integrating, the result is

dx
u=f-

(l_;^2)y3

X x^ 3x^ 3 • Sx'^

(— + + + + etc. )+ C.
1 2-3 2-4-5 2-4-6-7

Referring to Art. 76, it is found that

dx
C = sin"^ X

;

therefore u= sin"^ x=
-3 3x^ 3-5.;»r^

S + 2.3
+ 2.4.5^ 2-4-6-7

+ etc.,)+c-.

Let (1)

Assuming x=-.v^, then dx == 2vdv

I

—
2dv—= 2(1--v^y-' dv.and

Developing 2 (1 — z/^)"^, multiplying by dv, and integrat-

ing give
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J2 (1— z/^)-v4 dv=
V v'^ 3z/^ 3 • 5z/'

but /2 ( 1 — v^)-'^dv=^2 sin-^ z/ ; therefore, substituting for

z/ its value, x^^ the result is

dx
^ _- r __ 2 sin"^;r^.

(jiT— :r2) ^

2c?;f

Putting (1) under the form and assum-
{I'lx— Ax^)^

ing 2x= V, then

2dx dv
du=

(2-2x— Ax^)^ (2z;— z/2)%

dv
but w=r =:vers"^z/:

2dx
therefore u= f = vers"^ 2x.

J {2-2x— Ax^)'^

EXAMPLES
1. du^ {\ + x^)"^ dx
2. du=(2ax— x^)'^dx
3. du= {a-\- xY dx

Binomial Rates

78. If the rate is of the form

du^ {a-\- hx-^Y x^dx,

assume x= v-'^, then dx^=— v-^dv and x^^ir*^] therefore

du=— (a + hv^Y ir^~'^dv^

in which the exponent of v within the parenthesis is positive.

If the rate is of the form

du= (a;f« + hx'^Y x'^dx,

it can be written thus, s being less than n :

du=(a + bx'^-^Y ^"'^'^'dx,

in which only one term within the parenthesis contains the

variable.
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Finally, if the rate is of the form

in which m and n are fractional, by substituting for x another

variable having an exponent equal to the least common
multiple of the denominators of m and n, a new binomial rate

can be found in which the exponents of the variable will be

whole numbers. Thus, if in the rate

du={a+hx^^y x'^^^dx,

v^ be substituted for x, then, since dx= 6v^dv,

du= 6 (a + bv^)^ v^dv.

Hence any binomial rate can be reduced to one of the form

du={a+bx''y x'^dx, ( 1

)

in which the exponents m and n are whole numbers and n is

positive.

When r, the exponent of the parenthesis, is a positive whole
number, ( 1 ) can be integrated as shown in Art. 73 ; also, when
ni= n— 1, as shown in Art. 74.

(2)

Assuming a + bx""= V

in (l),then {a^bx'^y^v^

whence
• V— a

b

and
V— a

^m+i =^ / ^ (m+i)/n

b

hence, by passing to the rate and dividing by m + 1,

1 V— a
X^dx= ( )

(^+i)/«-if/z;.

bn b

Multiplying this by 2 gives

1 v—a
(a+ bx'^y X'^dx^ ( )(m+i)/n-l^r^^.

(3)
bn b

1 V— a
hence du= ( )

(^+i>/«-i v'-dv (4)
bn b

m -\- 1

which can be integrated when is a positive whole num-
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w + 1

ber, or when m -\- l=n^ (see Art. 72). If is negative,
n

see formula D, Art. 80.

Let du==(a+ bx'')'^x^dx

m -\-\ 1

in which w= 5, n= 2, = 3, and r^— ; then by sub-
n 2

stituting these values in (4), the following is obtained:

du= ( y v'^dv= (z/5/2— 2az;«/2 _|_ ^2^%) dv.
2b b 2b^

Then, by integrating and reducing,

1 v^ 2av^ a^v

b' ^ 7 5 3^
therefore, since v= (a -\- bx^),

1 {a-^bx^y 2a(a-\-bx^y~
u=— {

— +
b'^ 7 5

a^ (a + bx^)

^-J
L}^a + bx^)'^ + C.

m. + 1

If is not a whole number, ( 1
) may be written thus

:

n

du= [x"" {ax-"" -\-b)Y x'^dx= (ax-"" + ^)^ x'^^'^'-dx.

By substituting in the right hand member of (3) m -{- nr

for m, — n for n, a for b, and b for a, then

du={b + ax-"" ) ^ x'^^'^'-dx=
1 v— b

( )(m+nr+i)/-n-i^rj^^
(5)— an a

w + wr + 1

which can be integrated by Art. 72 when is a— n

positive whole number; if negative, by formula D of Art. 80.

79. Referring to Art. 9, it is found that

d {vz) = vdz + zdv,
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whence, by integrating,

vz= fvdz -\- fzdv

;

hence fvdz= vz—fzdv, ( 1

)

in which it is seen that the integral of vdz depends upon that

of zdv.

Resuming ( 1 ) of the last article,

du= {a-\- hx'^Y x'^dx, (2)

and assuming z^ {a -\- bx^)^,

in which the exponent s may have such a value assigned to it as

may be found most convenient; then, by passing to the rate,

dz=hns {a-\- bx" ) «-^ x'^-'^dx. ( 3

)

Again, assuming vdz= (a -\- bx^Y x^dxy
and dividing it by (3),

v=
bus

and, passing to the rate,

r
{ (m— M + l) {a -\- bx'^y-^^'' X'*'-''

-\- 1

bn{r— s -\- I) {a -\-bx''y-' x"^) dx ^

du= =
bns

r a{m— n -\- 1) x"^-"" + 1

b (m-\- nr— ns -\- 1 ) x"^

{ } (a + bx"")'-^ dx.
bus

Now let the value of s be such that

m -\- nr -\- I

m-\-nr— ns -\-l=0 or s=

then dv

n

a {m— n + 1 ) (a + bx"") (-«»-iv» x'^-'^dx

b (m -{- nr -{- 1)

Substituting the values of v, z, dv, and dz in ( 1 ) and inte-

grating,

f(a-\- bx'^Y x'^dx^

(a + ^?;ir«)^+i;r^-«-^^— a (m— w +1) J (a + bx''yx"'-''dx

b (m -\- nr -\- 1)
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in which the integral of (2) is made to depend upon that of

(a + hx'^y x*^-''dx.

In a similar manner it will be found that

if {a + bx'^y x'^-^'dx

depends upon / (^ + ^^^Y x^^-^'^dx ;

and by continuing the process, the exponent of x without the

parenthesis can be diminished until it is less than «.

Hence the integral of a binomial rate may he made to

depend upon the integral of another rate of the same form, but

in which the exponent of the variable without the parenthesis

is diminished by the exponent of the variable within.

If the rate is of the form

du= {a^— ;ir2)-% x'^dx,

substituting a^ for a, — 1 for b, 2 for n, and —— for r in

formula {A) gives

1

w= r ( a2_ ;r2 ) ^ x'^dx=—— {a''^ x^-)^ x^'-^ +

—^ r (a^— x^y^ x^-^dx, (a)
m

In this i[{a^— x^) "^ x^dx

depends on ^ {a^— x^Y"^ x"^-^dxy

and this, by a similar process, will be found to depend upon

({a^— x^Y'^x'^-'^dx,

1

and so on; so that after — m operations, since m is an even

number, the integral will depend upon

X
which is, by Art. 76, sin"^ —

.

a

If du={d' + x^Y^x'^dx,

by substituting in formula (/4), a^ for a, 1 for b, 2 for w, and

1

for r, the result will be
2
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1

ni

a^ (m— 1)

f (a' + x^y^ x'^-'dx, (b)
m

in which j {a" -\- x^) "'/^ x'^'dx

depends on / (^^ + ^')''^ ^"'-'f/jr,

and by continuing the process, when m is even, the integral

will depend on

ij{a^ + x^)-'^-dx, (5)

Assuming v^ x -{- {a^ -{- x^y\

x-^ {a^ + x^y-
then dv= dx -\- (a^ 4- x^Y^^ xdx= dx,

f/z' dx
and = = {a^ + x^y^'^ dx

;

V (a^ + jr^)^

therefore /(a^ + x"")-^^ dx=-\og {x + (a^ + ^r^)^^} + C.

If du^ilax—x-y^^x'^dx, (6)

assume z/= (lax— x'-y x"^-^= ( lax^"^-"-
— x^"" )

"^

;

a {2m— 1 ) x^^-^dx— mx^^-^dx
then ofz^= =

(Zax^""-^— x-'^^y^

a (2m— l)x^~^ dx mx^dx

(2ax— x^~y'' ~~ {2ax— x^y-

But the last term is equal to mdu ; therefore

a (2m— 1) x^~'^dx
dv= — mdu

(2ax— x^y-

dv a (2m— 1) x^~^dx
or du^— 4" .

m m (2ax— x'^y^

Hence, by integrating and substituting for v its value, it

will be found that

x'^dx 1

J
(2ax— x^y m

a (2m— 1) x"^-'^dx

m ^ (2ax— x^y'
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x'^dx x"'-^dx
in which f depends on (*

,J (2ax— x')'^ "^ ^ {2ax'-x^)'^

and this can be found to depend on

x'^'-'^dx

J {2ax^x^)^'

and so on; so that after m operations, when m is a positive

whole number, the integral will depend on

dx

^ {2ax— x^)'^'

which is, by Art. 76,

x
vers"^ —

.

a

In order to obtain formulas when m is negative, multiply

formula {A) hy b {m -\- nr -\- I) ] then

b (m -^ nr -\- 1) J (a -\- bx"")^ x^dx=
(a+ bx'^y^^ x"^-""^^— a (m— w + l)J(a + bx'')'' x^-^'dx.

Transposing the terms containing the sign of integration

and dividing bya(m— ^+1) give

J(a+ bx'')'-x'^-''dx=
(a + bx"")"-^"- x"^-""*^— & (m + «r + 1) r (a + bx'^Y x'^dx

i (5)
a (m.— n -\- 1)

in which / (^ + ^^")'* ^""'""dx

depends on / (^ + bx^)^ x^dx.

In a similar manner it will be found that

f (a + bx^y x'^dx

depends on j {a -\- bx^Y x^^^dx

.

and, finally, the exponent of x without the parenthesis of the

last term of (5) can be increased until it is less or greater than

n and positive.

Substituting o^ for a, ±\ for b, and 2 for w in (5), it will

be seen that
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(a^ztx^y^'-x"'-'' zt {m-\-2r+ I) j {a^ ±: x^'Y x'^dx

a^ (m— 1)

80. Again resuming

du^= {a-\- hx'^y x'^dx,

and assuming ^= ;r*,

in which such a value may be assigned to the exponent J as

may be desired; then, passing to the rate,

d2= sx'-^dx. (1)

Assume vdz= (a + hx^y x^dx
;

then, dividing it by (1),

1

v=^— {a + bx^^yx'^^'^^'-y

s

the rate of which is

dv=— {m— s+1) (a + bx^^y x'^-'dx +

bnr
(a+bx^)'-'^ x'^-^'-^dx.

s

But (a + bx'^y= (a -\- bx'^) {a+bx'^y-^;

hence dv= —{a(m— s + 1) + b (m— s + nr+l)x''}
s

{a+ bx'^y-'' x'^-'dx.

Now let the value of ^ be such that

m— s -\- nr -\-\-=0 or j= m + wr+l;
— anr {a + bx"" ) »-^ x'^'^'dx

then dv= .

m -\- nr -\-\

Substituting the values v, z, dv, and dz m (1) of the last

article, the result is

u= ^ {a-\- bx'^y x^dx=
(a + bx"")"" x*^^^ + anrf (a + bx^'y-^ x^dx—

^
(C )

m -\- nr -\- I
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in which / (^ + bx^Y x^dx

depends on / (^ + bx'^y-^ x^dx,

and this, by a like process, will be found to depend on

^{a + hx^^y-^x^dx,

and so on, till r, the exponent of the parenthesis of the term
containing the sign of integration, will be reduced to less

than unity when positive.

To obtain a formula when r is negative, multiply (C) by
m -\- nr -\- 1 , transpose the terms containing the sign of inte-

gration, and divide by anr\ then

u=f (a + hx^y-^ x^dx=

i
. (Z))

anr

In {D) / (a + hx'^y-'^ x'^dx

depends on / (^ + ^^")'' x"^dx,

and, by repeating the process, can be made to depend upon a

rate in which the exponent of (a + bx"^) will be positive.

EXAMPLES

Determine the integrals of the following

:

1. du^ (a— x^)^ x^dx

x^dx
2. du=

3. (/w=— (o + bx^y^ x^dx

4. du={l+xy'^x-^dx

Rational Fractional Rates

81. Every rational fractional rate can be reduced to the form

(px"^ + qx*^-^ -{- rx -\- s) dx +
A'x^-^dx + B'x^'-^dx ....+ R'xdx + S'dx

Ax» + 5jr«-^ +Rx+s
in which the exponents of the variable are all positive whole

numbers, and the greatest in the numerator of the fraction is

at least one less than in the denominator. Hence, since that

part of the expression which is not fractional can readily be
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integrated, it only remains to integrate the fractional part, or

A'x^'-'^dx + B'x^'-^dx + R'xdx + S'dx
du= . (1)

Ax^ + Bx^-^ .... -\-Rx+S

By resolving the denominator of this fraction into factors

of the first degree, and assuming them to be

X— a, X— b, X— c, etc.,

the equation may be written under the form

Edx Fdx Gdx Kdx
du= + - + ....+ -, (2)

X—a X—b X—c X—k

in which E, F, G, etc. are arbitrary constants whose values can

be determined in terms of a, b, c, etc. and A\ B' , C, etc. by

reducing (2) to a common denominator, and comparing the

coefficients of the like powers of x in the numerator of the

resulting fraction with those in the numerator of ( 1 )

.

Hence, when no two or more factors of the denominator of

(1) are aHke, the integral of (2) is, by Art. 72,

u-^E log {x— a) -{- F log {x— b) +
G\og{x— c) .... -\-K\og{x— k) +C. (3)

When, however, two or more factors are equal, as

a=b= c, (2) becomes

Edx Fdx Gdx Kdx
du= + + ....+ -, (4)

X—a X—a X—a x—k

in which E, F, and G have the same denominator ; consequently

these can be represented by a single constant, as in

Hdx Kdx
du= . . . . + .

{x— a) X— k

Here it will be seen that there are two more equations to

satisfy than there are arbitrary constants to be determined;

this condition, however, can be obviated by writing the equa-

tion thus

:

Edx Fdx Gdx Kdx
du= + + ....+

, (5)
(x— a)^ (x— a)^ X— a x— k

which retains the common denominator of (4).

In like manner, if there are two or more factors, as

(x— a)"*, (x— b)^, the equation can be written thus:
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Edx Fdx Gdx
du=

1
.... H +

{x— a)"» {x— a)"»-i {x— by
Hdx Kdx

(x—by--^
""

x— k'

Edx Fdx Edx
The terms , — in (5), also

{x— ay ' {x— a)'^
'

{x— 6)"»'

Fdx
etc. in this equation are equivalent to

{x— 6)'"-^

E {x— d)-^dx, F {x— ay^dx; and E (x— by^'dx,

F (x— by^'^^dx, etc. can be integrated by Art. 74; and the

terms having denominators of the first power, by logarithms.

ax^dx— c^dx
If du= -—

, (6)
X^— c^x

the factors of the denominator are

X, X— e, and x -\- c;

ax^dx— c^dx
therefore du

X (x— c) (x + c)

Edx Fdx Gdx
Making du= + +

, (7)
X X C X -\- c

and reducing it to a common denominator give

Ex^dx— Ec^dx -\- Fx^dx + Fcxdx-\- Gx^dx— Gcxdx
du^

Comparing the numerator of this with that of (6), it will

be found that

E-\-F + G= a, Fc^Gc= 0, 2in&Ec^= c\

1 1

whence £= c, F= —(a— c),and G= —(a— c).

Substituting these values in (7) gives

1 1— (o— c) dx — («— c) dx
edx 2 2

du= + + -

X -\- c
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and integrating,

1

u= c\ogx -\-— {a— c)\og {x— c) +

-{a— c)\og{x^c)+C

= clog;r + — (a— c) log (^x— c) {x ^ c) Ar C

1= ciog;r + — (a

—

c) log {x'^— c^) + C

= c\Qgx^ (a— c)log {x''— c''y--\-C.

2xdx— 7dx
If du= , (8)

(^_1)2(^_2)
then [see (4) and (5)]

Edx Fdx Gdx
du= + + . (9)

{x—\y x—\ x— 2

Reducing to a common denominator,

E {x— 2) ^ F {x"-— ^x ^2) -^ G (x'— 2x-^l)
du= dx.

(x— iy(^— 2)

Comparing the numerator of this with that of (8), the

following are obtained:

E= S, F= 3, and G=— 3.

Substituting these values in (9) gives

Sdx 3dx 3dx
du^ -|-

(x—iy x—l x— 2

Sdx Sdx= 5 (x—iy^dx-{-
X— 1 X— 2

and integrating by Arts. 74 and 72,

ur=—S (x— ly -i- Slog (x—l)— Slog {x— 2) +C.

To verify the principle set forth in (5), let

(ax^-{- bx 4" c) dx
du= .

(x— r)'
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Assume x— r^v, then x= v -\-r, dx= dv, and

a (v^ + 2rv + r^) dv -\- b {v + r) dv -\- cdv
du= —

,

or, collecting like powers of v,

(ar^ -\- br -\- c) dv -{- (2ar -\- b) vdv -\- av^dv
du

and, reducing,

(ar^ -\- br -\- c) dv (2ar + b) dv adv
du= -| +

Substituting for v and dv their values, x— r and dx, then

(ar^ 4- br 4- c) dx (2ar + b) dx adx
d^=

; J—

+

\ ,
+—, (10)

{x— ry {x— ry x— r

in which ar^ -\- br -\- c is represented in (5) by E, 2ar -\-

b

by F, and a by G.

Integrating (10) by Arts. 74 and 72 gives

1

u^—— (ar^ -{- br -\- c) (x— r)~^—
(2ar -\- b) (x— r)-'^ -\- a\og (x— r).

82. When the denominator contains a single pair of imagi-

nary factors, as x -{- r -^ s \/— 1 and x -\- r— s \/— 1

(whose product is x^ + 2r;i; -\- r"^ -{- s^) , the fraction becomes

A'x^-'^dx + B'x^-^'dx .... -\- S'dx
du= , (1)

{Ax^-^ + Bx^-^ _,, j^S) {x^-\-2rx + r^-\- s^)

which, assuming the factors of the denominator, other than

the imaginary pair, to be x— a, x— b, etc., may be written

thus:

Fdx Kdx

X— a X ^-b X— k

Pxdx + Qdx

x^ + 2rx + r2 + 6-=^

By reducing this to a common denominator and compar-

ing the numerator with that of (1), the values of E, F, etc.,

also of P and Q, may be determined.
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All but the last term of the second member of (2) can be

integrated by the methods in Art. 81 ; therefore it will only

be necessary to integrate the last term, which may be put under

the form

dv=— ^^^
. (3)

{x-{-ry-{-s^

Assume x -\- r=-z; then since dx= dz, (3) becomes

{Pz^Pr+Q)dz Pzdz (Pr—Q)dz
dv=

Z^ -f
j2 ^2 _^ ^2 ^2 _^ ^2

the integral of which is by Arts. 72 and 76

1 Pr—Q z
v=— P\og(z^ + s^)— tan-i — + C.

2 s s

Therefore, substituting for z its value x -\- r, the integral

of (3) is found to be

1 Pr—Q x + r ^
v=— P\og {x^ + 2rx + r^ + s^)— tan-^ + C

2 s s

or

Pr—Q x-^r
v= P\og (x^ + 2rx + r^ + J^)^— tan-^ + C.

s s

(2— x) dx (2— x) dx
If du=^- = ^

; (4)
x^ +1 (^+1) (x^— x+l)

Edx {Px+Q)dx Edx
then du= + = +

x-^1 x^— X-{-l x-\-l

Pxdx Qdx

X^ X -{-I X^ X -\-\

whence it is found that E=l, P=— 1, and Q = 1.

1

Substituting z for x——, (5) becomes

1

(z-\- — )dz
dz 2 dz

du= — +
3 3 3

z-i-— ^' + — z^-\--
2 4 4
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1

-dz
dz zdz 2

3 3 ' 3

2 4 4

the integral of which is

3 1 3 V3 2^V3
w= log(^ +-)— -log (^2 +-)+—- tan-^—-

;

^ ^ 4 o 3

1

w= log(;r+l)— -log(;»;2— ;r+l) +

^3 (2;ir— 1)V3
tan-^

3 3

or

^+1
. V3 (2^-l)V3 ^

w= log + tan-^ + C.

When the denominator contains several sets of imaginary
factors, respectively equal to each other, the factor

X + 2rx -\- r -\- s will enter the denominator several times

;

hence, for that part of the fraction containing only sets of

equal imaginary factors, may be put under the following form,

thus

{Ex^F)dx {Gx + H)dx
du= + 4-

(x^ + 2rx + r^ + j2)m (^2 _^ 2rx + 1-2 + ^^^m-i

(Px + Q)dx
(o)

(x"" + 2rx + r^ + s^)

The values of the constants E, F, G, etc., may be determined

as heretofore explained; then the integral of each term taken

separately.

Since the terms of the second member of (6) are all of

the same general form, it will only be necessary to integrate

the first term, which may be placed under the form

Exdx 4- Fdx
dv= ~

. (7)
(;r2 + 2rArH-r2-|- j2)m

Assuming x^=z— r, this expression becomes

Ezdz— {Er— F) dz
dv= =
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Ez {z^ + s^)-'^dz— (Er— F) (z^ -\- s"")-^ dz,

and, by Art. 74,

(Ez (z^ +'s')-»^dz= -^
.

•^ 2(1 — w)
By formula (D) of Art. 80, f—{Er— F) (z^ + s^)-^dz

can be made to depend upon J

—

(Er— F) (z^ -]- s^)-^ dz,

(Er-^F) z
which is— tan"^ —, thus completing the integration

of (7).

From the preceding, it is evident that the fraction can be

integrated, even when the denominator contains several dif-

ferent imaginary factors; providing, however, said factors

can be determined, and this condition applies to all fractional

rates.

1. du=

2. du=

3. du^

EXAMPLES
adx

2axdx + adx

x^—l
2(1— x) dx

Irrational Fractional Rates

83. Any irrational fractional rate will admit of integration

when it can be changed to a rational form. Thus, let

{x^^^ + ax^^^ + h) dx
du= ,

X + cx"^ -\- e

and assume x= z^; then

(z^ + az+b) 6z^dz {6z^ + 6az^ + 6bz')dz
du= = ,

which is a rational form and consequently can be integrated

by the methods explained in Arts. 81 and 82.

When the quantity under the radical sign is a polynomial,

the rate can not in general be changed to one of a rational

form. If, however, the rate is of the form

du= {a^ + bx+ cV)% Xdx, (1)
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in which X is a rational function of x, it can be changed to a
rate which will be rational ; thus, assuming

{a" + bx-{- cV)>^= 2— ex, (2)

then a" + bx + c'^x''= ^r^_ 2czx + c'^x'-
;

z'— d^
whence x^ . (3)

2cz^h ^ ^

This value of x substituted in the second member of (2),
by reducing, gives

(a^ + bx + cV )^= '

. (4)^ ^
2c2-^b ^ ^

The rate of (3) is

2 (cz^ + bz + a'c) dz
dx=— . (5)

{2cz^by

(5) divided by (4) gives

2dz
{a" + bx + cV)-% dx= ; (6)
^ ^ ^ 2cz^b ^

^

2Xdz
hence du= {a" -\- bx + c^x^y^- Xdx= , (7)

2cz -\- b

which is a rational form ; for, since X is a rational function of

X, it must also be a rational function of z] that is, if the value

of X be substituted in X, it will give the value of X in rational

terms of ^.

1

If X^—, then substituting this value of X in (7), since
X

z'^— a'

x= [see (3)1, (7) becomes

2dz 2cz -\- b 2dz
du=( ) ( ^— ) == .

2c2 -{- b z^— a^ z^— a^

The integral of this is, by Art. 80,

1 z— a
u=— \og—;—

;

a z -\- a

but from (2), z= (a^ + bx -^ c^a^)^ + ex,

1 (a^ -\- bx -j- e^x^)'^+ ex— a
therefore u=— \os h ^*

a ^(a^^bx-\- eVy+ ex + a
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If Z= 1, the integral of (7) will be

1

w=— log {2cz + b)\
c

but [see (2)],

2cz+b= 2c (a" + bx + cV)% + 2c^x + b

;

therefore

1

w=— log {2c (a" + bx + cV)^ + 2c^x + b} + C.
c

Ub= 0, then

1

u=— \og2c {(a^ + cVy^ + c;r} + C.
c

If X == ;i; then (7) becomes

(2c2 + by
which can be integrated by Art. 81.

(a^ + bx + x^)"^ dx
If du=

X
assume {a^ + bx + x^y''= x + z\

then [see (3) and (4)]

b— 2z

(b— 2zy

2(z^--bz + a^ydz

(b— 2zyX
which is rational in terms of z, as previously explained.

(8)

^2 bz -\- o?
and {d^+bx-^x''y=— —

. (9)
b— 2z

Taking the rate of (8) and reducing [see (5)]

du=— -^
. (10)

{b— 2zy

Multiplying (10) by (9) gives

2(z^— bz + a^ydz
(a^ + bx + x^ydx

therefore du
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84. When the rate is of the form

Xdx
du=— -,

(c-\-dx— x^)'^

assume c= ab and d= a— b; then

Xdx
du

{ab-{- (a—b) x— x''}'^

Now, since ab + (a— b) x— x''={a— x) {b + x),

assume y/ [(a— x) (b + x)] = (a— x) 2; (1)

then, squaring both members,

(a— x) (b + x) = (a---xy2^

or b-\-x=(a— x) 2^,

02^— b
whence x^= : (2^

2^-j-l ^ ^

and therefore,

a2^— b a -^ b
a— x= a— =

. (3)

Substituting this value of a— x in the second member of

( 1 ) , the result is

(a4-b) 2
V[(a-x) {b + x)]= \^ . (4)

2^ -{- I

The rate of (2) is

2 (a 4- b) 2d2
dx= ^ ^ . (5)

Dividing this by (4) and reducing give

dx 2d2

^[{a— x){b + x)] ^^ + r
Therefore, multiplying both members by X, it is found that

Xdx 2Xd2
du= =

,

^^[{a— x){b + x)] z^ + \

which is rational in terms of 2, as shown in Art. 83. When
X= 1, this becomes

2d2
du=

^2 + 1
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Hence u= 2 tan"^^ + C.

V[(a— ^) {b -\-x)]dx
If £/i*= ^ , (6)

then, proceeding as before, it will be found that

du==—^—^

—

, (7)

which is also a rational fraction.

(x— x'^y^" dx
Let du= . (8)

{i-xy ^

1

Here a=l, b= 0, {l—xy= , (x-^x^y^=
{z'-\-iy

2 'Zizdz

, and dx= [see (2), (3), (4), and (5)];

therefore, substituting these values in (8) and reducing, it will

be found that

2z'^dz 2dz
du= = 2 dz

z' + l z^ + 1

the integral of which is

u^2z— 2 tan"^^ + C.

X
Substituting for z its value, ( y%

1 — X

w= 2( —)%_2tan-^ ( ^— )V^ + C.
1 — X 1 — X

EXAMPLES
1. du=(x^-{-a)'^dx

dx
2. du=—

3. du=
(l_;t-2)%

3 (x— x^)'^'' dx

Transcendental Rates

85. Simple rates of this class, which admit of direct inte-

gration, have been previously treated; a few of those whose
integrals are less readily obtained will now be considered,

omitting the constant C.
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Let du= Xa'^dx,

in which X is an algebraic function of x, and its nth ratal co-
efficient is constant, represented by A in the formula.

dX dX'
Assume v= X,d2= a-'dx, and = X', = X", etc.,

dx dx

then dv=^dX and 2= .

log a

These values of v, z, dv, and dz'm ( 1 ) , Art. 79, give

Xa^ 1

i'Xa'^dx= — (dXa-^,
log a log a

1 X'a'^ 1

loga^ {\ogar (log ay -^

1 X"a^ 1

and fdX'a^= — i'dX^'a'^, etc.;
(log ay ^

{XogaY {log ay ^

from which the following is obtained

:

X X' X" ^
w==a^{ _ + ....± }. (1)

log a (loga)^ (loga)^ (logo)"

EXAMPLE

Here X= bx^ + cx^, the ratal coefficients of which are

2hx + Acx\ 2x + 12c;ir2, 24c;r, and 24c= /i.

Substituting these values in ( 1 ) gives

hx^ + cx"^ 2bx + 4c;r3

u^a'" {
— h

logo (logo)'

2h + \2cx^ 24cx 24c

+ - —}>
(log ay (logo)* (logo)'

from which it will be seen that when the greatest exponent of

X is even, the sign of the last term of ( 1 ) will be positive, and

when it is odd, the sign of the last term will be negative.

If du^ x^a^dXy

then X= ;ir*^, whose ratal coefficients are (m being a positive

number) :

mx"^-"^, m (m— 1) x'^-^ m (m— 1) (m— 2) .r'"-^ etc.
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Substituting these values in ( 1 ) gives

u= a'' {
— +

log a (loga)^

m{m— 1) ;tr^-2 m (m— 1) (m— 2) x""-^
_j_ H_

(loga)^ (log a)*

m (m— 1) .... 1—^
}. (2)

(logo)"*-^

If m be negative or fractional, then develop a^ by Mac-
laurin's theorem, Art. 24, multiply both members by x^ and
integrate.

86. When the rate is in the form of a logarithm, as

du= x^ log xdx,

assume v= log x and dz= x^dx
;

dx x""*"-

then dv= and 2

but

X n -\- 1

These values of v, z, dv, and dz'm ( 1 ) , Art. 79, give

;r"*^ x''^'' dx
du =/^" log xdx= log ;i;— f ( )

n+1 n-\- I X

^"** dx x^dx x^'''^

•^ n4-l X 'K-\-l+ 1 X ''n+l (w+1)'

therefore u= ( log ;i;
— )

.

n -\- 1 n -\- I

Let du= (\ogx)''dx, (1)

in which w is a positive integer.

Assume v= (log;r)" and d2= dx;

dx
then dv= n (log^f)""^ and 2= x;

X

and, by substitution,

du^J (logx)'' dx= x (logji;)"— nJ (log x)^-^ dx;

but — n f (log x)^~'^ dx=
— nx (log;r)"-^ + n (n— 1) f (log x)""-^ dx,

and n (n— 1) f (log x)""-^ dx=
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n(n--\)x (log;ir)»-2— w (n— 1) (n— 2) f (log x^-^ dx;

whence u= x {(logx)"^—n (log x)^-^ -\-

n(n—l) (log^)-^....+n(n— 1) (.... 1)}, (2)

in which the last sign will be plus when n is even, and minus
when n is odd. If w be negative; that is, if du= (log x)~^ dx,

assume dv= dx and 2= (logx)~'\ and proceed as before;

dx
u, however, will be found to depend on the integral of

,

log^

sometimes called Soldner's integral, which can be obtained by

series.

If du= x"' (logx)"" dxy

assume y= x^^^
;

then logy= (m+ 1) log;r

1

or (logxy= (
-)" (log 3^)".

m -\- I

Therefore, since dy= (m -\- 1) x^dx,

1

or x^dx= dy,
m + 1

1

du= x'^ (logxydx=( )"^' (logy)''dy,
m -\- I

the integral of which is the same as that of (1) multiplied by

1(——)"^^

m-\- I

If du=(logx)'' Xdx,

X.dx Xodx
assume fXdx= X„f = X,, / == X3, etc.

X X

and z;=(log;r)" and dz^=Xdx;

dx
then dv= n (log;r)"-^ and 2^= CXdx= X^.

X

These values of v, 2, dv, and d2 substituted in ( 1 ) ,
Art. 79,

give u= (logxyX^— n (log;jr)"-^ Xg

+

n(n—l) (logxy-^X — .... w(w— 1) (.... 1)^„,,- (^)
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If the integrals of

X^dx X^dx Xndx
Xdx, , ,

,XX X

can be found in finite terms, the proposed rate will have an

exact integral.

Let du= {logxy (1 +x^) dx.

1

Here n^3, jXdx= x -\- — x^= X^,
o

XJx 1

X 9

XJx 1 X,dx 1

( = x 4- x^= X„ and f = x -\- x^= X..
^ X 27 ^ X 81

Substituting these values in (3), the result is

1 1

u= {\ogxy{x + -x^)—?>{\ogxy{x + -x^) +

1 1

6 (log;r) {x + x^) —6 {x -\- x^).

Complex Circular Rates

87. Let du= sm'^ xcos"" xdx, (1)

and assume sin ;tr= 27

;

then cos x^ {\ — v^Y^ and cos xdx= dv,

dv dv
whence dx= =

.

cos X (1 — v^Y
Substituting these values of v and dz; m ( 1 ) ,

gives

du= V'^ (1 _^2)(n-l)/2^^^
(2)

Assuming cos x= z,

then will Jz*=— ^^ (1 — ^2)(m-i)/2 ^^ (3)

These can be integrated by Art. 78: (2), when w is a posi-

tive odd integer and m positive or negative, integral or frac-

tional; (3), when m is a positive odd integer, and n positive

or negative, integral or fractional. When these conditions do

not exist, they can be integrated in many cases by one of the

formulas A, B, C, or D.
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In du= sin^ x cos* x dx,

m= 2 and n= 3; therefore (2) becomes

du= v^ (1 — z;2) dv,

1 1 v^
hence w=— z/^—— v^= (5— 3v^

)

.

3 5
' Ms

or, substituting the value of v,

sin* jTu^ (5— 3 sin^ x)
15

(3) also becomes

du= —(l--2^)'^2^d2,

which by formula A can be made to depend on

f(l—2^)^2d2,

which is integrable by Art. 74.

In du == sin x^ dx,

assume sin^^z/; then, since cos.r=(l — z/^)^ and

dv

cos JIT

du= (1 — z^)-^ TJ^dv,

which, when n is a whole number, either positive or negative,

by the application of formula A or B may be made to depend

on (1— z/2)-^-afz/ or (I —v^)-"^ vdv.

The first of these can be integrated by Art. 75 and the

second by Art. 74.

If du= tan" xdXy
let tan x^v; then

dv
dx

1 -i-v^

v^dv
and du

-

1 -{-v^

a rational fraction.

tan xdx
If du=

sm^ X

sin^r . - , .

then, since tan x= , by substitution the result is

cos X
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au— ;

sin X cos X

therefore u= log tan X
;

(see Art. 32).

Let du= tan-^ xdx.

Now
xdx

d (x tan~^ x) ^ tan"^ xdx 4- ,

and
xdx 1

f = -log(l+j-0;

1

therefore w= ^tan-i;r—— log (1 +x'').

Let du^X sin"^ xdx,

and assume

Xdx= dz and sin"^ x= v, also f Z(/;r= X^
;

then </z/= ( 1 — ;ir2)-% f/;i; and ^= ^Xdx= X^.

Therefore u= X^ sin-^ x— ^X^{\— ;tr2)-% f/;r,

in which the integral of the proposed rate is made to depend
upon that of another, whose form is algebraic.

A similar process will apply to any of the following forms

:

X cos"^ X, X tan-^ x, X cot"^ x, etc.,

since the rates of cos "^ x, tan"^ x, cot~^ x, etc., all depend upon
the integral of an algebraic expression.

Examples
L du^a^x^dx

x^dx
2. du

log^ X

3. du= sin^ x cos^ xdx

4. du^x cos~^ xdx

Bernouilli's Series

88. Bernouilli's series expresses the integral of any rate of

the form
du= Xdx,

in which X is a function of x, in terms of X, its ratal co-

efficients, and X.
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To obtain this series, assume

X= v and dx= dz;

then dv= dX and 2= x.

Substituting these values in (2) of Art. 79, the resuh is

j'Xdx= xX— jxdX,

or, since dx is included in dX,
dX

fXdx= xX —j'xdx ( )

.

dX

dX
And assuming = v and xdx= d2;

dx

d'X x'
then, since dv= and 2=

dx^ 1-2

by substituting these values as before,

dX x^ dX x^dx d^X
'^^-

In a similar manner, it will be found that

x^dx d^X x^ d^X x^dx d^X

'^ 1-2 dx^ 1-2-3 dx' -^IZSdx'
x"" dX

therefore, by the substitution of xX— ( ) +
1-2 dx

x^ d^X
( ) — etc., the integral of (1) is found to be

1 • 2 • 3 dx'

x' dX x^ d'X
u= xX— (

) + ( )— etc.
1-2 dx 1 • 2 • 3 dx'

This series was obtained by John Bemouilli in 1694 and is

probably the first general development discovered; it is, how-
ever, but a particular case of Taylor's theorem, discovered in

1715. Such expressions as log (1 + ^)» sin;ir, and others can

be readily developed into a series by Bernouilli's theorem, as

shown by him.

Let du= (l-\-2x + 3x') dx,

in which (1 + 2 -j- 3x') represents X ; then

xX= x + 2x' + 3x\
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x^ dX x^ d'X— ( )='—x^— 3x^2ind ( )=x^;
1-2 dx 12-3dx^

therefore

u= x -\- 2x^ + 3x^— x^— 3x^ -\- x^= X -\- x^ -\- x^

.

EXAMPLES
1. du=(l+x^)'^dx

dx
2. du=

1+x^

Successive Integration

89. In the expression

d^u=(x^ + ax^) dx\

two integrations are required to determine the primitive func-

tion, or u in terms of x. Placing the expression under the form

d^u = x^dx + ax^dx,
dx

and integrating,

du x^ ax^—=— +— + c.
dx 4 3

Multiplying through by dx and integrating again,

x^ x^
u= + 4- C.x -}- Co.

The foregoing may be written thus

:

d^u

du
fz (^) + Q and M= /3 (x) + C^x + C^.

dx

From the preceding it will be seen that, if

d''u= f (x) dx"",

by taking n successive integration the following will be

obtained,

n+l

+ -7-; ^+----^ ,^ + C .

1-2 .... (n— 1) 1-2 .... (n— 2)
n-l
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The nth integral of

may be represented thus

:

u=§f {x)dx''.

d^u
Developing z=f (^x)

dx""

by Maclaurin's theorem (Art. 24), the result is

d^'u df{x)x d^f{x)x^ d'f(x)x'=A+ + + + etc.

dx^ dx l-2dx^ I2'3dx^

df{x) d'f(x)
Now, by substituting for A, , , etc., their

dx dx"^

values as shown in Art. 24, then multiplying by dx and integrat-

ing n successive times, plus a constant each integration, the

result will be a series expressing the value of u in terms of x.

d*u 1

Let =
,

dx'' l-\-x

the development of which is

d'u =1 — X -i- x^— x^ 4- etc.

dx'

Integrating this as explained, gives

AT* x^ x^
u= — \- etc. -f

2-3-4 2-3-4-5 3-4-5-6

\^ tX y-' oX _

2-3

EXAMPLE

d^u= edx"" + Z6xdx^ + ZOx*dx\

Note : In successive integration, it sometimes becomes ex-

pedient to integrate between limits, especially when there are

two or more independent variables. For instance, in the

equation of the circle, y'= 1 — ^', x can never be greater

than 1 nor less than zero.
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Integration of Partial Rates

90. Partial rates are obtained with reference to one variable

only, or with reference first to one variable, then to another,

etc., (see Art. 22).

Of the first class, as

du= Zx'^ydx,

the integral is u= x^y,

or, since the primitive function may contain terms in 3; alone,

an arbitrary quantity must be added, as Y, a function of y, as

such terms will disappear in passing to the rate ; thus,

u= x^y^Y + C.

This class of partial rates can be expressed generally thus

:

d^u= f {x,y,z,tic.) dx"".

Taking one of the second class, as

d^u= 9x'^y'^dxdy + 2xdxdy,

and integrating first with respect to x, then with respect to 3^,

du= Sx^y^dy + x^dy-{-Y and u= x^y^-\- x^y-\- (Ydy-\-X-\- C.

This class of partial rates can be expressed generally thus

:

d^u^f {x, y, z, etc.) dx^'dydz^ etc.,

in which m is equal to the sum of the exponents of the rates of

the independent variables ; that is,

m= n -\- r -\- s -\- etc.

Let d^u= 6xy^dxdy. ( 1

)

The integral of this with respect to x is

du= 3x^y^dy (2)

or, since there may have been a term containing 3; alone in (2)

which would disappear in ( 1 ) by passing to the rate,

du= Sx^y^dy -\-Y.

Integrating again with respect to y, it will be found that

u= x^y^ -\-fYdy-^X.

EXAMPLES

1

.

d^u= d^x^dy^ -\- ydy^

2. d^u^x^ydxdy^
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Integration of Total Rates
91. Let du= f, (x, y)dx + f, {x, y) dy, ( 1

)

of which the partial rates are

du=:f^{x,y)dx
and <i'^= f2{Xyy) dy.

Dividing the first by dx and the second by dy give
du—= /.(.,.) (2)

du
an<l

.
—= /2(^,3') (3)

Taking the rate of (2) with respect to y and dividing by
dy\ then the rate of (3) with respect to x and dividing by dx,
the results are

d^u

dxdy

d^u
and ~—= f^{x,y).

aydx

Now, as is shown in Art. 23, in order that ( 1 ) be integrable,

d^u d^u
must equal - ,

dxdy dydx

that is /g {x,y)=f^{x,y).

This is termed the test of integration.

li du= f {x, y, z) dx + f (x, y, z)dy-\-f (jr, y, z) dz,

in order that this expression be integrable the following condi-

tions must be fulfilled : viz.,

d^u d^u d^u d^u d^u d^u

dxdy dydx dxdz dzdx dydz dzdy

and similarly if there are four or more independent variables.

Let du= {Zx^y^ \- y -{- 1) dx -^ {2x^ y -\- x + a) dy, (4)

the partial rates of which are

du={Zx^y^-\-y-]-\)dx (5)

and du= {2x^y -\- x + a) dy, (6)

whence are obtained the following,

d^u
. = 6x^y + \

dxdy
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and = 6x^y -\- 1,

dydx

which fulfill the conditions stated above; therefore (4) is

integrable.

It will be seen that the original function must have con-

tained all the terms in x indicated in (5), also all the terms in

3^ indicated in (6). Now the integral of (5) is

u^ x^y^ -\- xy -{-

X

(7)

and of (6) u= x^y^ + -^3^ + ^3', (8)

but it will be observed that the terms in (8) containing x are

also included in (7), and therefore should be omitted in

integrating; consequently the integral of (4) is

u= x^y^ -\- xy -\- X -\- ay.

Let du= ay^dx + 2xdy, (9)

of which the partial rates are

du= ay^dx and du= 2xdy,

from which are obtained

flPw d^u
=2ay and = 2,

dxdy dydx

which are not equal; therefore (9) is not integrable.

Let du= (2xy + 2'' + l)dx+ (x^ + 3y^2 + a) dy -\-

{2xz + / ^ 4^ + t) dz. (10)

It is obvious here, as in rates of two independent variables,

that the integral of the coefficient of dx must have all the terms

containing x in the original function ; therefore, in integrating

the coefficient of dy, the terms containing x must be omitted,

and in integrating the coefficient of dz, the terms containing

both X and 3; must also be omitted.

Proceeding thus, it is found that

u= x^y -f ^2^ + AT + y^z -\- ay -{- z^ -{- bz.

EXAMPLES

fl?if= (2xy -\- 3x^n) dx + (2xy + x) dy

ydx xdy xydz
du= + +

a— z a— z (a— z)
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3 2xy Zx'f— x^
au=— {x^— y')dx— dy -\ dz

Z 2 2^

du= (sin 3;— y sin x) dx -{- (cos ;»; -j- ;f cos 3;) dy

Homogeneous Rates

92. A homogeneous rate is one in which the sum of the

exponents of the variables is the same in each term ; this sum
is called the degree of the rate, and is here designated by n.

When such a rate fulfills the conditions given in the last

article, the integral can be obtained by substituting, for instance,

X, y, z for dx, dy, dz, etc., in their respective factors of the

functional rate, thus increasing by unity the exponent each of

X, y, z, etc. in its said factor; then collecting like terms and
dividing by w + 1

.

To prove this, let

du= Pdx+Qdy + Rdz + ^tc.
'>

(1)

be a homogeneous rate, in which P, Q, R, etc. are algebraic

functions of x, y, z, etc. of the «th degree.

Now it is evident that this must have been deduced from a

homogeneous algebraic function of the form

u= P'x+ Q'y + R'z + etc., (2)

of the degree n-\-\, since taking the rate diminished by unity

the exponent of the variable so treated in each term of (1).

Substituting xy' for y, xz' for z, etc. in (2), each term in the

value of w will contain ;r"*^, consequently

u= Nx''^\ (3)

in which A^ is a function of y', 2', etc., but does not contain x;

hence, the rate of (3) with respect to x, is

--^=(« + l)JV^». (4)
dx

The rates of xy\ xz' , etc. with respect to x, are y'dx, z'dx,
'

etc., and these rates substituted in ( 1 ) and divided by dx, give

du,-—= P^-Qy'^Rz'^ etc. (5)
dx

du
but = (w + 1) A/'.r", (4), therefore

dx

(n + 1) iV.r»= P + Qy' + Rz' + etc.
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or, by multiplying by x,

(n + 1 ) Nx""^^= Px-\- Qxy + Rxz' + etc.

Therefore, substituting 3^ for xy' , z for xz' , etc., and divid-

ing by (w + 1),

Px^Qy-\-Rz^ etc.

n+ 1

or, since Nx'^-^^= u [see (3)],

P;ir + Q3' + ^-^.+ etc.

u= —
. (6)

n + 1

EXAMPLES

Integrate du= (3;^ + mxy) dx -{- {x -{- mxy) dy and

{nx^'-'^y + y"") dx + {x"" + .^3;"-^) dy + (n + 1) ^^

Length of Curves

93. In case of curves referred to rectangular coordinates, it

has been shown in Art. 46 that

dz={dx^ + dy^)'^,

whence z=j{dx^ + dy^)"^,

which is a general expression for the length of a curve, or the

length of any arc thereof, estimated from the origin of the

coordinates or some special point. When the radical is ex-

pressed in terms of x and dx, or y and dy, obtained from the

equation of the curve, its integral may be determined.

In case of polar curves, the rate of an arc is [see Art.

57, (1)]:

dz={dr^-^r^dv^y^,
whence ^=J ( c/r^ -j- r^dv^ ) ^,

which is the general expression for the length of an arc of a

curve referred to polar coordinates, estimated from the pole or

some special point. When the radical is expressed in terms of

r and dr, or v and dv, its integral may be determined.

Taking the circle whose radius is unity, its sine x and

cosine (1

—

x^)"^, then

X
t= tan z= ,

(l_;t-2)y2

whence

n—x'^Y-dx^x^ (l—x^y'^dx dx
dt= ——— =

. (1)
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x^ 1
Now 1 + ^2^1-4 =

, /2^

Dividing (1) by (2), the result is

dt dx= = dz,
1+^2 (1_^2)%

or dz=:{l + t^)-''dt,

the rate of an arc of a circle in terms of the tangent and its rate.

Developing, dz^={\ — t^ -\- t^— f« + etc. ) dt

t^ t^ f
and integrating, z=t—— + ——— + etc., (3)

/

which needs no correction, since ^= when ^^ 0.

Now, by means of the trigonometrical formula

2 tano
tan 2a= ;

1 — tan^ a

1

when tan a=—, we find

120
tan 4a= .

119

Also, by means of the formula

tan A— tan 5
tan (A— B) = ,

1 + tan ^ tan 5

120
when tan A= and tan B= tan 45°= 1, we find

119

1

tan (A— B) =
239

1

Hence, four times the arc whose tangent is — exceeds the

1

arc of 45° by an arc whose tangent is . In a similar manner,
^

239

we shall find that twice the arc whose tangent is— exceeds

1 , .1
the arc whose tangent is — by an arc whose tangent is

—
-.
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Therefore, if ^= arc of 45°, since (as has been shown in

the paragraph immediately preceding)

1 1 1

arc 45° = 8 tan — 4 tan — tan
,

10 515 239

by applying these values to (3) and multiplying by 4, since arc

180° = TT, the following are obtained

:

1111 \

8 ( — + — + etc.)

10 3(10)3 5(10)^ 7(10)^
^

. ,
1 1 1 1=4(— 4( — + — + etc.)

^
515 3(515)=^ 5(515)=^ 7(515)'11 11— ( — + — + etc.)

239 3(239)3 5(239)^ 7(239)^

Six terms of the first line and three each of the second and
third will give

7r= 3.141592653589793.

The transcendental equation of the cycloid is (see Art. 42)

ydy
du= .

(2ry— y)%

Squaring this equation and substituting the value of dx"^ in

the rate of the arc give

v^dy^
dz={df+ ' •"

)^
2ry— y2

2r
or, reducing, dz= dy ( )^.

2r— y

Putting this under the form

d2={2r)'^ {Ir— yY'^dy,

and integrating by Art. 74,

^=— 2(2r)% (2r— y)^ + C,

or ^=—.2V{2r(2r— y)} + C.
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D

147

Estimating the arc
from A, z= for

y= 0, consequently

= — 4r + C or
C= 4r, hence z=
4r-~2V{2r(2r—y)},
which represents the

B length of an arc of

the cycloid, estimated

from A to any point,

as P.
If y= CD= 2r

then 2= APD= 4r

and since APD ^AP=DP=4r— [4r— 2V{2r(2r— y)}],

DP= 2yy{2r(2r— y)} (4)

which represents the length of the arc estimated from D to any
point P.

By similar triangles,

CD:DL::DL:DE

or DL={CDDE)^)
but, since CD^2r and y= PF= CE, DE= 2r— y, hence

DL= ^y{2r(2r— y)}

therefore, comparing this with (4), it will be found that

arc DP= 2DL

;

that is, the arc of the cycloid, estimated from the vertex of the

axis CD, is equal to twice the corresponding chord DL of the
N
r generating circle.

The equation of the

logarithmic curve is

B .r= log y.

____^A

~~7^ Passmg to the rate and
^^ squaring,

dy^

3,2

c

^1

X Substituting this value

of dx^ in the rate of the arc

and reducing give
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az= .

y

Integrating by formula C of Art. 80,

dy

Integrating again by Art. ^Z,

z={l-\-y')'^— \og -- + C;
(1+3'')"— (1—3')

or, multiplying both numerator and denominator of the fraction

in the second member by (1 + y')''^^ + (1— 3') and reducing,

1 + (1+3'')^

3'

With C the origin of coordinates, when x=^0, 3/= 1 and
z= 0', consequently

=V2— log(l+V2)+C,
or C=—V2 + log(l+V2),
therefore

1 + (1+3'')^
^=(l+3,2)y._iog — V2 + log(l + V2),

3^

which represents an arc of the logarithmic curve AB, esti-

mated toward B from the point where it cuts the axis of

coordinates.

The equation of the spiral of Archimedes is

V

2^

Taking the rate and squaring,

dr^=

Substituting this value of dr in the rate of the curve and
reducing,

dv
dz= (l+z/2)^.

2ir

First integrating by formula C of Art. 80, then by Art.

83, (6),
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2= —[v{l -{.v^y^— \og{{l -\-v^y^— v}]

which represents the length of any arc of the spiral of Archi-
medes, estimated from the pole ; no correction is needed, since

2^0 when v= 0.

EXAMPLES

1. Determine the length of an arc of the common parabola.

2. Determine the length of an elliptic quadrant in terms of

its eccentricity, the semi-major axis being unity and the semi-

minor axis a.

3. Determine the length of an arc of the logarithmic spiral,

estimated from the point where r= 1

.

Area of Curves

94. The rate of the area of a curve referred to rectangular

coordinates is, by Art. 47,

dA= ydx,

which can be integrated when the second member is given in

terms of y and dy, or x and dx.

The rate of the area of a polar curve is, by Art. 57,

'
1

dA=— r^'dv,

2

which can be integrated when the second member is expressed

in terms of r and dr, or v and dv.

Multiplying both members of the equation of the circle

by dx gives

ydx={R''— x'')'^dx,

hence dA= {R^— x^)"^ dx.

Integrating, first by formula C of Art. 80, then by Art. 76,

1 R^ XA=— x(R^— x')'^-\- sin-i—, (a)

2 2 R

which requires no correction, since A=0 when x= 0.

Making x= R, since the arc of sine unity is — tt,

1

A=-R^'K,
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which gives the area of a quadrant of a circle whose radius is

R\ therefore the area of the entire circle is R'^tt.

The equation of the ellipse, referred to its center and axis,

when both members are multiplied by dx, is

b
ydx=— (a^— x^)"^^ dx;

a

b
hence dA=— (a^-^x^y^dx.

a

Integrating, first by formula C of Art. 80, then by Art. 76,

b I a^ X
A=-{-x(a^^x^)^ + -sm-^-}, (b)

a 2 2 a

which requires no correction, since A^O when x= 0.

1

If x= a, since the arc of sine unity is equal to —ir, then

M 2

/-'H'^^'^N b 1

X_-L.Jx A=-{-a^7r),

r I
EH 1

t G f—jGor A=— abTr,

\^—y^-^'w^ which represents the area of a quarter of

\^^J__^^-^^' an ellipse whose semi-major axis is a and

n' semi-minor axis is b] therefore the area of

j_. the entire ellipse is equal to abir.

'§• ^^ Comparing {a) with {b), it will be seen

that the area of a segment of the ellipse, as

CDEF, is equal to the area of the corresponding segment of

b
the circumscribing circle, CMNF, multiplied by — ; hence

a

b
area DEE'D'=— (area MNN'M').

a

Taking the general equation of the parabola

yn= axor y= a^'^'x^i'^,

and multiplying both members by dx, the result is

ydx= a^i'^x^i^'dx
;

hence dA= a^i'^x^'^'dx.

n
Integrating, A= ^^i/n^cn+D/n _^ q

w + 1
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Estimating the area from the vertex of the parabola, A=^Q
when x=^0, and consequently C= 0; therefore

n n
A = al/n^(n+l)/n -_ ^ (o^f^X^'^^

or, substituting 3; for a}^^x'^'^\

n
A=^^.S, (1)

which represents the area of a segment of any parabola, and is

equal to the rectangle described by the abscissa and ordinate,

n
multiplied by the constant term

»+ 1

If n^2, (1) becomes
2A^— xy;
3

that is, the area of a segment of the common parabola is equal

to two-thirds of the area of the rectangle described by the

abscissa and ordinate.

If n^l, (1) becomes

that is, the area of a triangle is equal to half the product of its

base and perpendicular.

Multiplying both members of the equation of the hyperbola,

referred to its center and axes, by dx gives

b b
ydx=— (jr2— a2)%(/jir or dA=— (x^— a^)'^dx.

a a

Integrating first by formula C of Art. 80, then by Art. 83,

txix^— a^)"^ ab

2a 2

When A^O, x= a; consequently

ab log a
C=

therefore

bx (x'— a2)H ab x-\- (^-— a^')"^

-T-^og { },

^a
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or, since
a

A=^xy
2

ab bx + ciy

log( ^-^).
2 ab

Squaring both members of the equation of the spiral of

V
.

1

Archimedes (r=— ) and muUiplying by — dv give
27r 2

or

whence, integrating,

1
1-2 ^„,

v^dv
r av —

2
'

Stt^
'

A A .

v^dv
a/i — -

8.^
'

Z/3

A= - + C.
24 TT

Estimating the area from the pole, A= when v= 0, and

consequently C= ; therefore

If v= 2'iT, then
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which represents the area of PBA, described by one revolution
of the radius vector : that is, the area of the first spire is equal
to one-third of the area of a circle, whose radius is equal to the

radius vector of the spiral at the end of the first revolution.

If v= 4'ir, then

8

3

which represents the area described by the radius vector in

two revolutions; but it will be seen that the radius vector

describes the portion PBA a second time ; therefore, to obtain

the area of PB'A^, the area described by the first revolution

must be deducted : that is,

8 1 7
area PBA=— tt—— 7r=— v.

3 3 3

EXAMPLES

1. Determine the area of the cycloid.

2. Determine the area of a segment of the logarithmic curve,

lying between the curve and axis of ordinates, estimated from
the point where the curve cuts the axis of ordinates.

Surface Areas of Revolution

95. For a curve referred to rectangular coordinates, revolv-

ing about the axis of X, the rate of the surface area of rotation

is (see Art. 48)
dS= 2Tr ydz.

In case the curve is revolved. about the axis of F, it is evi-

dent that the rate of the surface area will then be

dS^2ir xdz.

When the second member of either of these equations is

expressed in terms of x and dx or y and dy, the integral thereof

may be determined.

From the equation of the common parabola it will be

found that

ydy
dx= .

P

Substituting this value of dx in the rate of the area of the

surface of revolution,

dS= 2'jry{^^-^-\-dy')\
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or dS=-^ (3/2 + p-'Y- dy.

P

Integrating by Art. 78,

^=-^^y" + p'r' + ^-
3p

Estimating the arc from the origin of coordinates, S=
2p^7r

when V= ; hence C=— and
3

s=^{{f + p'r'—p'},
3p

which represents the surface area of revolution of the common
parabola for any ordinate y.

The equation of the ellipse is

b a^— b^
ydz=— (a^— x^y^dx

a a^

or, representing the eccentricity of the ellipse by e, by substi-

tuting a^e^ for a^— b^, since a^— b^= a^e^,

b
ydz=— {a^— e^x^Y^ dx ;

a

2be IT a^
therefore dS= (—— x^) '/^ dx.

a e"^

Integrating, first by formula C of Art. 80, then by Art. 76,

gives

S= ^^^^-^{—— x''Y'x^
a e^ e a

which needs no correction, since ^9= when x= 0\ hence

the expression represents the surface area of that part of an
ellipsoid estimated from the vertex of the minor axis and cor-

responding to the abscissa x, the arc being revolved about the

major axis. By making x^a and reducing,

abir
S= b^TT -}- sin"^ e,

e

which gives one-half the area of the surface of the ellipsoid;
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therefore if S' represents the area of the entire surface, then

^ 2ah'ir

e

When a=^h, e= 0, and the equation becomes

the area of the surface of a sphere whose semi-diameter is h.

If the ellipse be revolved about its minor axis, then will

b^

2a TT

hence dS= (b' + a^e'y^)'^dy.
b^

Integrating, first by formula C of Art. 80, then by Art. 83,

gives

S=^{b^ + a^e^f-y^y +

log {(M + aV/)% + aey] + C.
e

Estimating the surface from the vertex of the major axis,

^= when y= 0, in which case

b^^
C=— log&^

e

therefore S= —(b'-{- a'e'y^ ) % y +

—^log {(M + a^e^y^)"^ + aey}— log b-,

e e

OTT b'TT (b' -^ a'e'y')"^ -\- aey

or S= -{b* + a'e'y'y^y-{- log{ }•

b^ e b-

Now, since b= a{l — e'')'^ and (62 + aV)^= a, when

y=b, this becomes

b^'rr abil-^e)"^
S= a^n + log—77 —

e ab (1 — e)"^

or S= a^ir + log
—

e "(1—0 H
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which represents half the area of the surface of a spheroid.

If S^ represents the entire surface, then

If a^b, then

log (1 -^ ey^— log (1 — ey^
}.

S' {1 +
log(l + ^)^— log(l— ^)^

}.

Now, when a=b, e^O; but by Art. 35,

log(l + ^)^'^— log(l— ^)^
1;

therefore the surface of a sphere whose semi-diameter is b, is

From the equation of the logarithmic curve, it will be

found that

yd2=(l+y^ydy, hence dS= 2 n (1 + y^y'^ dy

.

Integrating by Arts. 80 and 83,

log[(l+3'^)^ + y]}+C-

Estimating the surface from P,

the point where the axis of ordi-

nates cuts the curve, S= when
y=l; consequently

C=^{—V2— log(v'2+l)};
therefore

log [(l+y^)^ + 3']}—

^{V2 + log(V2+l)}.
This represents the area of the surface of revolution of any
arc of the logarithmic curve, estimated from P, as PC, and cor-

responding to the ordinate y= DC, the curve being revolved

about the axis of abscissas AB.

EXAMPLES

1. Determine the area of the convex surface of a right conoid

whose perpendicular height is a and diameter of base is b.

2. Determine the area of surface of revolution of the

cycloid when revolved about its base.
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3. Determine the area of the convex surface of a cubical

paraboloid, when the axis of ordinates is the axis of revolution.

The equation is y^= ax.

Volume of Revolution

96. The rate of the volume of revolution generated by an

arc of a curve revolved about its axis of abscissas is, by Art. 49,

dV^^iry^dx. (1)

When the second member of this equation is expressed in

terms of either x and dx, or y and dy, its integral can be

determined.

When the axis of Y is the axis of revolution, the rate of the

volume of revolution thus generated is

dV= TT x^dy.

From the general equation of the parabola, y^= ax, it will

be found that

n
dx=— y'^-'^dy.

a

Substituting this value of <i;r in ( 1 )

,

n
dV=— 7ry''*^dy,

a

and integrating, the result is

n n y*
V=————^yn^^^C= ^y^( -— •-)+C,

a (n + 2) n + 2 a

yn n
or since —= x, V=Try^ (

i.-. ,ujl» ! ;»;) -\-C,
a n-\-2

which needs no correction, since v= when x= 0. If n:=l,

1

then V=— 7ry''x,

which represents the volume of a right cone whose altitude is x

and y one-half of the diameter of its base.

1

If n= 2,then V=— 7ry^x,

which represents the volume of the common parabola.
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The equation of the elHpse, when the origin is at the vertex

of its minor axis, is

hence [see (2)],

dV= ^{2by— yndy.
b^

a^TT 1

Integrating, V=—— {by^—— y^)^C,
b'^ 3

in which C^ when 3'= ; therefore

li y= b, then

b' ^ 3
^

2
V= -a'b7r,

3

which represents the volume of one-half of a spheroid; hence

the entire volume is

4 2
V'=— a^b7r= —(2a^b7r).

3 3

But la^bir represents the volume of a cylinder, whose altitude

is 2b and the radius of whose base is a; therefore the volume
of a spheroid is equal to two-thirds of the volume of a circum-

scribed cylinder.

The equation of the hyperbola, when the origin of the

coordinates is at the vertex of the transverse axis, is

b'
y^^— {x^-\-2ax).

Substituting this value of 3;^ in ( 1 )

,

dV= (x^-{-2ax) dx.

b^TT 1

Integrating, V= {—x^ + ax^)+C.
a^ 3

Estimating the volume of revolution from the origin of

coordinates, we have F= when x= 0, and consequently

C= 0; therefore
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b^TT 1

a^ 3

which represents the volume of revolution of the hyperbola

for any abscissa.

The ratal equation of the cycloid is

ydy
dx

(2ry— y=^)^

Substituting this value oi dx m ( 1 )

,

TT y^dy
dV

{Zry— y^)"^ •

the integral of which is

1 5 yF= 7r{— (2/ + 5ry + 15r^) {2ry— y^)"^ -\- — r^ vtis-"^—}

.

6 2 r

5^
Ifv^2r, then F=— r^ vers"^ 2,

2

or, since vers~^ 2= tt,

5

2

which represents one-half the volume of revolution generated

by the cycloid revolved about its base. The entire volume is

EXAMPLES

1. Determine the volume of rotation of the ellipse when the

origin of the coordinates is at the vertex of the major axis.

2. Determine the volume of revolution of the logarithmic

curve when revolved about its axis of abscissas.

3. Determine the volume of revolution about its axis of

abscissas of the curve whose equation is

y= x{x-[-a).

97. Let BDEF be a plane moving from A toward X along

the axis of X and at right-angles thereto, and let AC be repre-
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^^ B

\\
D

/i-—-—^ /
^v^^~-~—

—

y c X

Fig.^J^^^-^
r
&

sented \yy x,BC by y, and FC
by v\ then the rate of the

volume of the solid thus gen-
erated will be

dV= f(v,y)dx,
or, since 3'= /(-^) and

dV= f{x)dx (1)

This formula is applicable

to the volume of any solid,

when the area of the plane
BDEF can be expressed in terms of x and dx.

Determine the volume of a right pyramid whose base is a

rectangle.

Let the perpendicular Aa be represented by x, the side BC
by 3;, and the side Cp by v ; also let y= ax and v= by. Then
the area of BCDE will be

vy^abx^; hence

dV= abx^dx,

and integrating,

1
f^'g-

V=— abx\
3

But abx^ is the area of BCDE;
therefore the volume of the pyra-
mid is equal to the area of its

base multiplied by one-third of

its perpendicular height.

Required the volume of a parabolic paraboloid, the fixed

parabola being the semi-cubical and the generatrix the common
parabola.

Let x^AC, y= BC, and
v=CE= CD; then for ABX,

and for BCE, v^= by.

From these equations it

will be found that the area of

BDE is — ab'^x,

3
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also

and integrating,

dV^-ab'^xdx,
3

2
V=— ab'^x\

3

Required the volume of an elliptical ellipsoid, the equations
being for the fixed ellipse a'y^= aV— b^'x'' and for the gen-
eratrix a'v^= a'c''— c2;r2 and the origin of coordinates being
at the center.

^
^ f

J]fV
-i

3'

\
^A'

Le
CO--

then

and

But

tA'C= a,BC= b,CP= c,

= x,B'C'=y, and C'i^'=z/;

from the equations,

A 1 -G
/
/r 3'= -(fl^— ^^)^

At a

F

F

E

. 66

?
v= —(a^— x^)'^,

a

be
vy= —(a^'— x').

nvy= 3Lve2L of B'D'E'F',

be IT be
dV= (a^-^x^)dx=(':rbe— x^) dx,

and integrating, V ^=-Kbcx
irbe

3a^
X,

which requires no correction since V= when jt= ; hence,

making x= a,

1 2
V ^ir abe—— TV abe=— tt abe.

3 3

Since F is one-half the volume of the ellipsoid, F', the volume
4

of the entire solid, is — ir abe.
3

EXAMPLES

1. Determine the volume of an elliptical conoid whose
altitude is a' and the radius of whose base is b\

2. Determine the volume of a groin formed by the inter-

section of two equal semi-cylinders at right-angles to each

other, the equation being y= 2rx— x.
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Curved Surfaces Referred to Three
Rectangular Coordinates

98. To obtain a formula for the volume of a solid bounded
by a curved surface and referred to three rectangular coordi-
nates, X, y, and 2, of which s^f (x,y).

Let the plane C'CPD be para-
llel to the plane A'ZX and the

plane EPBB' ptaraliel to the plane
YZA' ; also let A'B'= C'P'= x,

A'C'= B'P'= y and P'P= z.

Represent dx by P'a' == c^b^ and
dy by P'c'= a'h'; then zdxdy
v^ill represent the rate of the

volume of the solid; that is,

dW= zdxdy. {A)

To obtain a formula for the

surface area, let Pa^cb repre-
sent dx, Pc= ab represent dy,

and Nc= Ma represent ds ; also

let PM be a tangent to the curve
CPD at P (Fig. 60), PN a tangent
to the curve BPE at P, and PQ a

perpendicular to NM. Then v^ill

PN= {dx^ + dz^)"^,

PM= {dy^-^dz^)"^,

and NM= {dx^ J^ dy^)^.

From these three equations the

following is obtained:

_ {dx^dy^^dx^-dz'^^dy'^dz'^y-~
(dx^~ -\- dy^y-

but PQ • NM= area of NPML=
(dx^dy"" + dx^dz^ -f dy^dz^y^

;

therefore d^S=
(dx^dy^ + dx^dz^ + dy^dz^y. (B)

Required the volume, also the surface area of a sphere, the

equation being

z^= r^—(x^-^y^). (1)

For the volume [see formula (A)], it will be seen that

d^V= (r^— x^— y^y dxdy == zdxdy.
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The integral of this with respect to y, between the limits

y= and y= (r^— x^)"^, is

2 (r^— x'^)^ 4

y 1

since {r^— x^)'^= y and sin~^ —=— n.

y 2

Integrating this expression with respect to x gives

1 1

4 3 ^

or between the limits x= and x= r,

1 1 1

4 ^ 3^6
which represents one-eighth of the volume of a sphere ; there-

fore the volume of the entire sphere is

Resuming (1),

4

3

22= r^^x^— y\

and taking the rate, first with respect to x, then with respect

to y, the results are

xdx ydy
dz=— and dz^— :

z z

y^dy^ x^dx^
hence dz^= and dz^= .

z^ z-

Substituting these values of dz^ in formula B, so that

dx^dz^ dy^dz^
7- + ^-7-

x^dx^dy^ y^dy^dx^
shall read \-

and reducing (since dz will be eliminated), the resuh is

dxdy
d'S== (x' + y' -i- z')"^,
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or, since

and

AN ELEMENTARY TREATISE

rdxdy
d'S

(f^— x^— 3;^)''

The integral of this with respect to y, between the Umits
of 3^= and y= (r— x), is

ydx
dS= r sin-^

y= (r^— x^y%
y

(r^— x'')2V/2
= 1

1

therefore, since sin"^ 1 =—tt,

2

dS^— rir dx,
2

the integral of which, between the limits of ;r= and x= r,

is

1

2

which represents one-eighth of the surface area of a sphere,

therefore the entire area is

99. A body T, with a uniform velocity, proceeds from C,

toward A, along the straight line CA,
D^ and a body P, with a velocity which

is to that of r as 1 to n, proceeds
from B in pursuit of T and always in

the direction of T. Required the

equation of the curve APB, called the

curve of pursuit, which is described

by P.

Let A be the origin, BC= a,

AS^x, PS^y, and the arc AP=2;
then AT^nz and (see Art. 40) the

ydx
L subtangent ST= .

dy
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Now, since

ydx

dy

ydx
X— = nz.

dy

Taking the rate of this, regarding dy as constant, and re-

ducing give

yd'^x———= ndz] (1)
ay

dx^
but dz= (dx' + dy^)^= dy ( + 1)''*.

dy^

From this and (1), the following is found:

ndy dx^ d^x

y dy^ dy

dx
Integrating by Art. 84, regarding as the variable, the

dy

result is

dx dx^— nlog3r= log {—-+(-— +1)^} + C.
ay dy^

dx dx
Since = tan SPT, when = 0, y= a] therefore

dy dy

— n log a= C,

hence, transposing the value of C, it is found that

dx dx^
nXoga— n log 3^= log {-— + (tT + ^)^)'

dy dy-

a" dx dx^
or log-= log{-— +(—- +1)^'^};

3;" dy dy-

a« dx dx^
hence -= —-+(-—+1)^.

y^ dy dy^

By resolving this, it will be found that

dx=— a'^y-'^dy—— a-^y'dy, ( ^

}
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the integral of which is

a« 1
^== yi-n

. yi+n r^\

2(1— n)
-^

2a- (l-i-n) ^ ' ^ ^

which needs no correction, since 3'= when x= 0, and
therefore is the required equation.

Dividing (3) hy n, then, when y= a and x= AC,

X a a a

n 2n {I — n) 2n (l -\- n) 1

—

n^'

AC
or, since x^AC and = APB,

n

APB=-^. (4)
1 — n^

1

When M=—
, (3) and (4) become

y"^ 1^==—-(«— 73^),
a'^ 3

4
and APB=— a.

3

From (1), (2), and (3) it will be found that

1 dx a" 1— (x— y ) = y^-- 4- vi+«

;

n dy 2(1— n) 2a«(l+w)

a" 1

and 2= y-« + y+" (5)
2(1— n) 2a"(l + w) "^

1

which represents the length of any arc, as AP. When n=—

,

(5) becomes

5= a'V + ^3^'^=7^ (3o + J)-
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